Surface chemistry, charge, wettability, and roughness affect the adsorbed protein layer, influencing biocompatibility and functionality of implants. Material engineering seeks innovative, sensitive, and reliable characterization techniques for study the adsorbed proteins. These techniques must be suitable to be directly used on the surfaces of clinical interest. In this paper, the characterization of surfaces with topography and chemistry developed for osseointegration is performed by innovative surface analysis techniques to investigate the properties of adsorbed bovine serum albumin. Ti6Al4V alloy chemically treated with an oxidative process to obtain peculiar surface features (roughness and surface hydroxylation) was tested and compared with mirror-polished titanium. Albumin forms a continuous layer on both Ti surfaces when adsorbed from near physiological concentrations, as proved by Kelvin force probe microscopy. It was observed that the hydroxylation degree plays a pivotal role in determining the conformation of proteins after adsorption, where it strongly drives protein unfolding, as confirmed by Surface Enhanced Raman scattering, and in influencing the mechanism and chemical stability of protein-surface interactions, which was highlighted by zeta potential titration curves.(c) 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Advanced characterization of albumin adsorption on a chemically treated surface for osseointegration: an innovative experimental approach / Barberi, Jacopo; Ferraris, Sara; Giovannozzi, ANDREA MARIO; Mandrile, Luisa; Piatti, Erik; Rossi, ANDREA MARIO; Spriano, Silvia. - In: MATERIALS & DESIGN. - ISSN 0264-1275. - 218:(2022), p. 110712. [10.1016/j.matdes.2022.110712]

Advanced characterization of albumin adsorption on a chemically treated surface for osseointegration: an innovative experimental approach

Andrea Mario Giovannozzi;Luisa Mandrile;Andrea Mario Rossi
Membro del Collaboration Group
;
2022

Abstract

Surface chemistry, charge, wettability, and roughness affect the adsorbed protein layer, influencing biocompatibility and functionality of implants. Material engineering seeks innovative, sensitive, and reliable characterization techniques for study the adsorbed proteins. These techniques must be suitable to be directly used on the surfaces of clinical interest. In this paper, the characterization of surfaces with topography and chemistry developed for osseointegration is performed by innovative surface analysis techniques to investigate the properties of adsorbed bovine serum albumin. Ti6Al4V alloy chemically treated with an oxidative process to obtain peculiar surface features (roughness and surface hydroxylation) was tested and compared with mirror-polished titanium. Albumin forms a continuous layer on both Ti surfaces when adsorbed from near physiological concentrations, as proved by Kelvin force probe microscopy. It was observed that the hydroxylation degree plays a pivotal role in determining the conformation of proteins after adsorption, where it strongly drives protein unfolding, as confirmed by Surface Enhanced Raman scattering, and in influencing the mechanism and chemical stability of protein-surface interactions, which was highlighted by zeta potential titration curves.(c) 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0264127522003343-main.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative Commons
Dimensione 2.3 MB
Formato Adobe PDF
2.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11696/76381
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
social impact