The present study investigates the influence of photosensitizer selection and the polymer electrolyte composition on the performance of quasi-solid-state dye-sensitized solar cells (QsDSSCs). Two benchmark ruthenium dyes, N719 and Z907, alongside a novel photoactive phenothiazine dye were used. Each dye was incorporated into a QsDSSC architecture employing poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) as the gel electrolyte matrix, with varying molecular weights, to investigate their impacts on the overall device performance and long-term stability. Our results demonstrated that the N719 dye exhibited the highest power conversion efficiency (PCE), attributed to its strong absorption in the visible spectrum and efficient electron injection into the TiO2 photoanode. Z907, on the other hand, showed moderate PCE due to its broader absorption profile but slower electron injection kinetics. The phenothiazine dye revealed promising PCE, with tunable absorption properties and efficient charge transfer. Furthermore, the impact of PVDF-HFP polymer gel electrolytes with varying molecular weights on cell stability was explored. The QsDSSC incorporating the PVH80 polymer with the phenothiazine dye exhibited reduced dye desorption, due to the effective dye molecules’ immobilization by the gel matrix, and consequently enhanced long-term stability over 600 h. This comparative study sheds light on the interplay between dye selection, the polymer gel’s properties, and QsDSSCs’ performance. These insights are crucial in designing robust and efficient QsDSSCs for practical applications.

Comparative Study of Quasi-Solid-State Dye-Sensitized Solar Cells Using Z907, N719, Photoactive Phenothiazine Dyes and PVDF-HFP Gel Polymer Electrolytes with Different Molecular Weights / Afre, Rakesh A.; Ryu, Ka Yeon; Shin, Won Suk; Pugliese, Diego. - In: PHOTONICS. - ISSN 2304-6732. - 11:8(2024). [10.3390/photonics11080760]

Comparative Study of Quasi-Solid-State Dye-Sensitized Solar Cells Using Z907, N719, Photoactive Phenothiazine Dyes and PVDF-HFP Gel Polymer Electrolytes with Different Molecular Weights

Pugliese, Diego
2024

Abstract

The present study investigates the influence of photosensitizer selection and the polymer electrolyte composition on the performance of quasi-solid-state dye-sensitized solar cells (QsDSSCs). Two benchmark ruthenium dyes, N719 and Z907, alongside a novel photoactive phenothiazine dye were used. Each dye was incorporated into a QsDSSC architecture employing poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) as the gel electrolyte matrix, with varying molecular weights, to investigate their impacts on the overall device performance and long-term stability. Our results demonstrated that the N719 dye exhibited the highest power conversion efficiency (PCE), attributed to its strong absorption in the visible spectrum and efficient electron injection into the TiO2 photoanode. Z907, on the other hand, showed moderate PCE due to its broader absorption profile but slower electron injection kinetics. The phenothiazine dye revealed promising PCE, with tunable absorption properties and efficient charge transfer. Furthermore, the impact of PVDF-HFP polymer gel electrolytes with varying molecular weights on cell stability was explored. The QsDSSC incorporating the PVH80 polymer with the phenothiazine dye exhibited reduced dye desorption, due to the effective dye molecules’ immobilization by the gel matrix, and consequently enhanced long-term stability over 600 h. This comparative study sheds light on the interplay between dye selection, the polymer gel’s properties, and QsDSSCs’ performance. These insights are crucial in designing robust and efficient QsDSSCs for practical applications.
File in questo prodotto:
File Dimensione Formato  
Comparative Study of QSDSSCs Using Z907, N719, Photoactive Phenothiazine Dyes and PVDF-HFP Gel Polymer Electrolytes with Different Molecular Weights.pdf

accesso aperto

Descrizione: Post-print editore
Tipologia: final published article (publisher’s version)
Licenza: Creative Commons
Dimensione 3.79 MB
Formato Adobe PDF
3.79 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11696/81559
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact