Biological neuronal networks are characterized by nonlinear interactions and complex connectivity. Given the growing impetus to build neuromorphic computers, understanding physical devices that exhibit structures and functionalities similar to biological neural networks is an important step toward this goal. Self-organizing circuits of nanodevices are at the forefront of the research in neuromorphic computing, as their behavior mimics synaptic plasticity features of biological neuronal circuits. However, an effective theory to describe their behavior is lacking. This study provides for the first time an effective mean field theory for the emergent voltage-induced polymorphism of circuits of a nanowire connectome, showing that the behavior of these circuits can be explained by a low-dimensional dynamical equation. The equation can be derived from the microscopic dynamics of a single memristive junction in analytical form. The effective model is tested on experiments of nanowire networks and show that it fits both the potentiation and depression of these synapse-mimicking circuits. It is shown that this theory applies beyond the case of nanowire networks by formulating a general mean-field theory of conductance transitions in self-organizing memristive connectomes.

Mean Field Theory of Self‐Organizing Memristive Connectomes / Caravelli, Francesco; Milano, Gianluca; Ricciardi, Carlo; Kuncic, Zdenka. - In: ANNALEN DER PHYSIK. - ISSN 0003-3804. - 535:8(2023). [10.1002/andp.202300090]

Mean Field Theory of Self‐Organizing Memristive Connectomes

Milano, Gianluca;
2023

Abstract

Biological neuronal networks are characterized by nonlinear interactions and complex connectivity. Given the growing impetus to build neuromorphic computers, understanding physical devices that exhibit structures and functionalities similar to biological neural networks is an important step toward this goal. Self-organizing circuits of nanodevices are at the forefront of the research in neuromorphic computing, as their behavior mimics synaptic plasticity features of biological neuronal circuits. However, an effective theory to describe their behavior is lacking. This study provides for the first time an effective mean field theory for the emergent voltage-induced polymorphism of circuits of a nanowire connectome, showing that the behavior of these circuits can be explained by a low-dimensional dynamical equation. The equation can be derived from the microscopic dynamics of a single memristive junction in analytical form. The effective model is tested on experiments of nanowire networks and show that it fits both the potentiation and depression of these synapse-mimicking circuits. It is shown that this theory applies beyond the case of nanowire networks by formulating a general mean-field theory of conductance transitions in self-organizing memristive connectomes.
File in questo prodotto:
File Dimensione Formato  
Annalen der Physik - 2023 - Caravelli - Mean Field Theory of Self‐Organizing Memristive Connectomes.pdf

non disponibili

Tipologia: final published article (publisher’s version)
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 833.31 kB
Formato Adobe PDF
833.31 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11696/79959
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact