Two-photon direct laser writing enables the fabrication of shape-changing microstructures that can be exploited in stimuli responsive micro-robotics and photonics. The use of Liquid Crystalline Networks (LCN) allows to realize 3D micrometric objects that can contract along a specific direction in response to stimuli, such as temperature or light. In this paper, the fabrication of free-standing LCN microstructures is demonstrated as graphical units of a smart tag for simple physical and optical encryption. Using an array of identical pixels, information can be hidden to the observer and revealed only upon application of a specific stimulus. The reading mechanism is based on the shape-change of each pixel under stimuli and their color that combine together in a two-level encryption label. Once the stimulus is removed, the pixels recover their original shape and the message remains completely hidden. Therefore, an opto-mechanical equivalent of an "invisible ink" is realized. This new concept paves the way for introducing enhanced functionalities in smart micro-systems within a single lithography step, spanning from storage devices with physical encryption to complex motion actuators.

Liquid Crystalline Network Microstructures for Stimuli Responsive Labels with Multi‐Level Encryption / Donato, Simone; Nocentini, Sara; Martella, Daniele; Kolagatla, Srikanth; Wiersma, Diederik S.; Parmeggiani, Camilla; Delaney, Colm; Florea, Larisa. - In: SMALL. - ISSN 1613-6810. - (2023). [10.1002/smll.202306802]

Liquid Crystalline Network Microstructures for Stimuli Responsive Labels with Multi‐Level Encryption

Nocentini, Sara;Martella, Daniele;Wiersma, Diederik S.;Parmeggiani, Camilla;
2023

Abstract

Two-photon direct laser writing enables the fabrication of shape-changing microstructures that can be exploited in stimuli responsive micro-robotics and photonics. The use of Liquid Crystalline Networks (LCN) allows to realize 3D micrometric objects that can contract along a specific direction in response to stimuli, such as temperature or light. In this paper, the fabrication of free-standing LCN microstructures is demonstrated as graphical units of a smart tag for simple physical and optical encryption. Using an array of identical pixels, information can be hidden to the observer and revealed only upon application of a specific stimulus. The reading mechanism is based on the shape-change of each pixel under stimuli and their color that combine together in a two-level encryption label. Once the stimulus is removed, the pixels recover their original shape and the message remains completely hidden. Therefore, an opto-mechanical equivalent of an "invisible ink" is realized. This new concept paves the way for introducing enhanced functionalities in smart micro-systems within a single lithography step, spanning from storage devices with physical encryption to complex motion actuators.
File in questo prodotto:
File Dimensione Formato  
Small - 2023 - Donato - Liquid Crystalline Network Microstructures for Stimuli Responsive Labels with Multi‐Leve-1.pdf

accesso aperto

Tipologia: accepted manuscript (author’s post-print)
Licenza: Creative Commons
Dimensione 2.61 MB
Formato Adobe PDF
2.61 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11696/79899
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 4
social impact