Dye-sensitized solar cells (DSSCs) are gaining a newfound interest thanks to their superior ability to harvest indoor light with efficiency higher than other photovoltaic technologies. This study reports, for the first time, the possibility of using laser-induced graphene (LIG) as a flexible counter electrode material for DSSCs. A flexible LIG (F-LIG) electrode was fabricated by direct laser writing of a polyimide film, without the need of a starting conductive substrate. The prepared electrodes showed a higher catalytic activity towards the reduction of I3 − / I − with respect to a more expensive Pt-based counter electrode. Moreover, the F-LIG electrodes outperformed electrodeposited PEDOT as a catalytic material for reduction of a copper bipyridyl complex (Cu(II/I)(tmby)2TFSI2/ 1) electrolyte. The F-LIG based DSSCs showed an open circuit voltage as high as 0.94 V and an increase in photoconversion efficiency higher than 60% with respect to the PEDOT-based counterpart, stepping from 3.08% to 4.96%. Thanks to the easy one-step laser-based fabrication process, the LIG-based DSSC was integrated with a LIG-based supercapacitor (SC), obtaining a flexible energy harvesting and storage system that was able to selfcharge both under simulated solar illumination and under indoor artificial illumination, appearing to be a promising energy source for the next generation of self-powered connected Internet of Things devices
Laser-induced graphene as a sustainable counter electrode for DSSC enabling flexible self-powered integrated harvesting and storage device for indoor application / Speranza, R.; Reina, M.; Zaccagnini, P.; Pedico, A.; Lamberti, A.. - In: ELECTROCHIMICA ACTA. - ISSN 0013-4686. - 460:(2023), pp. 1-11. [10.1016/j.electacta.2023.142614]
Laser-induced graphene as a sustainable counter electrode for DSSC enabling flexible self-powered integrated harvesting and storage device for indoor application
Pedico A.;
2023
Abstract
Dye-sensitized solar cells (DSSCs) are gaining a newfound interest thanks to their superior ability to harvest indoor light with efficiency higher than other photovoltaic technologies. This study reports, for the first time, the possibility of using laser-induced graphene (LIG) as a flexible counter electrode material for DSSCs. A flexible LIG (F-LIG) electrode was fabricated by direct laser writing of a polyimide film, without the need of a starting conductive substrate. The prepared electrodes showed a higher catalytic activity towards the reduction of I3 − / I − with respect to a more expensive Pt-based counter electrode. Moreover, the F-LIG electrodes outperformed electrodeposited PEDOT as a catalytic material for reduction of a copper bipyridyl complex (Cu(II/I)(tmby)2TFSI2/ 1) electrolyte. The F-LIG based DSSCs showed an open circuit voltage as high as 0.94 V and an increase in photoconversion efficiency higher than 60% with respect to the PEDOT-based counterpart, stepping from 3.08% to 4.96%. Thanks to the easy one-step laser-based fabrication process, the LIG-based DSSC was integrated with a LIG-based supercapacitor (SC), obtaining a flexible energy harvesting and storage system that was able to selfcharge both under simulated solar illumination and under indoor artificial illumination, appearing to be a promising energy source for the next generation of self-powered connected Internet of Things devicesFile | Dimensione | Formato | |
---|---|---|---|
Speranza et al. - 2023 - Laser-induced graphene as a sustainable counter el.pdf
non disponibili
Tipologia:
final published article (publisher’s version)
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
5.1 MB
Formato
Adobe PDF
|
5.1 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Laser-induced graphene as a sustainable counter electrode for DSSC enabling flexible self-powered integrated harvesting and storage device for indoor application.pdf
embargo fino al 18/05/2025
Tipologia:
accepted manuscript (author’s post-print)
Licenza:
Creative Commons
Dimensione
9.46 MB
Formato
Adobe PDF
|
9.46 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.