Efficiency, stability, and cost-effectiveness are the prime challenges in research of materials for solar cells. Technologically as well as scientifically, attention gained by dye-sensitized solar cells (DSSCs) stems from their low material and fabrication costs as well as high efficiency projections. The aim of this study is to explore the carbon nanotubes (CNTs) based counter electrode (CE) materials for DSSCs and to reconnoiter the suitable alternative materials in place of noble metals such as Platinum (Pt), and Gold (Au).. Various classes of CE materials based on CNTs including pure single walled, double walled, and multiwalled CNTs, doped CNTs and their hybrid composites with various polymers, and transition metal compounds are discussed comprehensively in light of the research work started since the inspection of DSSCs and CNTs.The properties associated with such materials, including surface morphology, structural determination, thermal stability, and electrochemical activity, are also thoroughly analyzed and compared. This work provides a thorough insight into the possibility of exploiting CNTs as alternative CE materials. In addition to the above, this study also includes the working and brief overview of materials for other components of DSSCs such as photoanode, electrolyte, and sensitizer..

Counter electrode materials based on carbon nanotubes for dye-sensitized solar cells / Shahzad, Nadia; Lutfullah, Null; Perveen, Tahira; Pugliese, Diego; Haq, Sirajul; Fatima, Nusrat; Salman, Syed Muhammad; Tagliaferro, Alberto; Shahzad, Muhammad Imran. - In: RENEWABLE & SUSTAINABLE ENERGY REVIEWS. - ISSN 1364-0321. - 159:(2022), p. 112196. [10.1016/j.rser.2022.112196]

Counter electrode materials based on carbon nanotubes for dye-sensitized solar cells

Pugliese, Diego;
2022

Abstract

Efficiency, stability, and cost-effectiveness are the prime challenges in research of materials for solar cells. Technologically as well as scientifically, attention gained by dye-sensitized solar cells (DSSCs) stems from their low material and fabrication costs as well as high efficiency projections. The aim of this study is to explore the carbon nanotubes (CNTs) based counter electrode (CE) materials for DSSCs and to reconnoiter the suitable alternative materials in place of noble metals such as Platinum (Pt), and Gold (Au).. Various classes of CE materials based on CNTs including pure single walled, double walled, and multiwalled CNTs, doped CNTs and their hybrid composites with various polymers, and transition metal compounds are discussed comprehensively in light of the research work started since the inspection of DSSCs and CNTs.The properties associated with such materials, including surface morphology, structural determination, thermal stability, and electrochemical activity, are also thoroughly analyzed and compared. This work provides a thorough insight into the possibility of exploiting CNTs as alternative CE materials. In addition to the above, this study also includes the working and brief overview of materials for other components of DSSCs such as photoanode, electrolyte, and sensitizer..
File in questo prodotto:
File Dimensione Formato  
Pre-print.pdf

accesso aperto

Licenza: Pubblico - Tutti i diritti riservati
Dimensione 4.52 MB
Formato Adobe PDF
4.52 MB Adobe PDF Visualizza/Apri
Post-print autore.pdf

Open Access dal 25/02/2024

Licenza: Creative Commons
Dimensione 5.08 MB
Formato Adobe PDF
5.08 MB Adobe PDF Visualizza/Apri
pdfresizer.com-pdf-resize.pdf

non disponibili

Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.44 MB
Formato Adobe PDF
2.44 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11696/77370
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 36
social impact