In this paper, highly (up to 5.25 mol% Er2O3) Er-doped phosphate bulk glasses were synthesized by conventional melt-quenching method and their physical, thermal and spectroscopic properties are reported. The influence of Er3+ doping concentration on emission spectra and lifetimes was investigated in order to study the concentration quenching effect on luminescence performance and therefore to evaluate the most suitable rare earth content for developing compact fibre laser and optical amplifier operating at 1.55 μm. A radiative lifetime and a quenching concentration equal to τ0 = 7.05 ms and N0 = 9.92 × 10^20 ions/cm3 were respectively calculated by fitting the fluorescence lifetime experimental data with Auzel's limited diffusion model.
Concentration quenching in an Er-doped phosphate glass for compact optical lasers and amplifiers / Pugliese, Diego; Boetti, NADIA GIOVANNA; Lousteau, J.; CECI GINISTRELLI, Edoardo; Bertone, Elisa; Geobaldo, Francesco; Milanese, Daniel. - In: JOURNAL OF ALLOYS AND COMPOUNDS. - ISSN 0925-8388. - 657:(2016), pp. 678-683. [10.1016/j.jallcom.2015.10.126]
Concentration quenching in an Er-doped phosphate glass for compact optical lasers and amplifiers
PUGLIESE, DIEGO;
2016
Abstract
In this paper, highly (up to 5.25 mol% Er2O3) Er-doped phosphate bulk glasses were synthesized by conventional melt-quenching method and their physical, thermal and spectroscopic properties are reported. The influence of Er3+ doping concentration on emission spectra and lifetimes was investigated in order to study the concentration quenching effect on luminescence performance and therefore to evaluate the most suitable rare earth content for developing compact fibre laser and optical amplifier operating at 1.55 μm. A radiative lifetime and a quenching concentration equal to τ0 = 7.05 ms and N0 = 9.92 × 10^20 ions/cm3 were respectively calculated by fitting the fluorescence lifetime experimental data with Auzel's limited diffusion model.File | Dimensione | Formato | |
---|---|---|---|
Pugliese et al_Journal of Alloys and Compounds 657 (2016) 678-683.pdf
non disponibili
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.12 MB
Formato
Adobe PDF
|
1.12 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
16_Pugliese_JAlCom_accepted manuscript.pdf
accesso aperto
Licenza:
Creative Commons
Dimensione
1 MB
Formato
Adobe PDF
|
1 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.