The gelation of ionic liquid-based solutions with inorganic or organic fillers is one of the strategies commonly adopted in the Dye-Sensitized Solar Cells (DSSCs) field for preparing quasi-solid electrolytes characterized by good photovoltaic performance and long-term stability. In the present paper, the application of a gel electrolyte based on unmodified microcrystalline cellulose and ionic liquids in a DSSC is reported. The gel electrolyte has been characterized evaluating its conductive, thermogravimetric, viscous and crystalline properties, while the photoelectrochemical behavior of the quasi-solid DSSCs has been investigated measuring current-voltage, Electrochemical Impedance Spectroscopy and Linear Sweep Voltammetry curves. The photovoltaic performance of cellulose gel-based DSSCs has been optimized by monitoring some key parameters, such as ionic liquid volume ratios and cellulose content. A maximum photoconversion efficiency of 3.33% has been obtained with the total absence of organic solvents, and a good stability has been demonstrated during more than 8 hours of exposition (replicated over months) to simulated solar light. Moreover, a peculiar and reversible trend in the short-circuit current density and in the overall efficiency of the cell has been observed during prolonged photovoltaic measurements. The present findings suggest the necessity to adopt a new protocol for the measurement of the photovoltaic parameters of quasi-solid DSSCs.

New insights in long-term photovoltaic performance characterization of cellulose-based gel electrolytes for stable dye-sensitized solar cells / Salvador, GIAN PAOLO; Pugliese, Diego; Bella, Federico; Chiappone, Annalisa; Sacco, Adriano; Bianco, Stefano; Quaglio, Marzia. - In: ELECTROCHIMICA ACTA. - ISSN 0013-4686. - 146:(2014), pp. 44-51. [10.1016/j.electacta.2014.09.014]

New insights in long-term photovoltaic performance characterization of cellulose-based gel electrolytes for stable dye-sensitized solar cells

PUGLIESE, DIEGO;BIANCO, STEFANO;
2014

Abstract

The gelation of ionic liquid-based solutions with inorganic or organic fillers is one of the strategies commonly adopted in the Dye-Sensitized Solar Cells (DSSCs) field for preparing quasi-solid electrolytes characterized by good photovoltaic performance and long-term stability. In the present paper, the application of a gel electrolyte based on unmodified microcrystalline cellulose and ionic liquids in a DSSC is reported. The gel electrolyte has been characterized evaluating its conductive, thermogravimetric, viscous and crystalline properties, while the photoelectrochemical behavior of the quasi-solid DSSCs has been investigated measuring current-voltage, Electrochemical Impedance Spectroscopy and Linear Sweep Voltammetry curves. The photovoltaic performance of cellulose gel-based DSSCs has been optimized by monitoring some key parameters, such as ionic liquid volume ratios and cellulose content. A maximum photoconversion efficiency of 3.33% has been obtained with the total absence of organic solvents, and a good stability has been demonstrated during more than 8 hours of exposition (replicated over months) to simulated solar light. Moreover, a peculiar and reversible trend in the short-circuit current density and in the overall efficiency of the cell has been observed during prolonged photovoltaic measurements. The present findings suggest the necessity to adopt a new protocol for the measurement of the photovoltaic parameters of quasi-solid DSSCs.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0013468614017630-main.pdf

non disponibili

Tipologia: final published article (publisher’s version)
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.92 MB
Formato Adobe PDF
1.92 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11696/77335
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 73
  • ???jsp.display-item.citation.isi??? 66
social impact