The room temperature dual-mode self-calibrating detector combines low-loss photodiodes with electrical substitution radiometry for determination of optical power. By using thermal detection as a built-in reference in the detector, the internal losses of the photodiode can be determined directly, without the need of an external reference. Computer simulations were used to develop a thermal design that minimises the electro-optical non-equivalence in electrical substitution. Based on this thermal design, we produced detector modules that we mounted in a trap structure for minimised reflection loss. The thermal simulations predicted a change in response of around 280 parts per million per millimeter when changing the position of the beam along the centre line of the photodiode, and we were able to reproduce this change experimentally. We report on dual-mode internal loss estimation measurements with radiation of 488 nm at power levels of 500 mu W, 875 mu W and 1250 mu W, using two different methods of electrical substitution. In addition, we present three different calculation algorithms for determining the optical power in thermal mode, all three showing consistent results. We present room temperature optical power measurements at an uncertainty level approaching that of the cryogenic radiometer with 400 ppm (k = 2), where the type A standard uncertainty in the thermal measurement only contributed with 26 ppm at 1250 mu W in a 6 hour long measurement sequence.

Dual-mode room temperature self-calibrating photodiodes approaching cryogenic radiometer uncertainty / S Ulset, Marit; Bardalen, Eivind; Pepe, Carlo; Filippo, Roberto; Rajteri, Mauro; Sildoja, Meelis-Mait; Kübarsepp, Toomas; Gieseler, Julian; Gran, Jarle. - In: METROLOGIA. - ISSN 0026-1394. - 59:3(2022), p. 035008. [10.1088/1681-7575/ac6a94]

Dual-mode room temperature self-calibrating photodiodes approaching cryogenic radiometer uncertainty

Carlo Pepe;Roberto Filippo;Mauro Rajteri;
2022

Abstract

The room temperature dual-mode self-calibrating detector combines low-loss photodiodes with electrical substitution radiometry for determination of optical power. By using thermal detection as a built-in reference in the detector, the internal losses of the photodiode can be determined directly, without the need of an external reference. Computer simulations were used to develop a thermal design that minimises the electro-optical non-equivalence in electrical substitution. Based on this thermal design, we produced detector modules that we mounted in a trap structure for minimised reflection loss. The thermal simulations predicted a change in response of around 280 parts per million per millimeter when changing the position of the beam along the centre line of the photodiode, and we were able to reproduce this change experimentally. We report on dual-mode internal loss estimation measurements with radiation of 488 nm at power levels of 500 mu W, 875 mu W and 1250 mu W, using two different methods of electrical substitution. In addition, we present three different calculation algorithms for determining the optical power in thermal mode, all three showing consistent results. We present room temperature optical power measurements at an uncertainty level approaching that of the cryogenic radiometer with 400 ppm (k = 2), where the type A standard uncertainty in the thermal measurement only contributed with 26 ppm at 1250 mu W in a 6 hour long measurement sequence.
File in questo prodotto:
File Dimensione Formato  
2022 MET Ulset Dual mode room temperature self calibrating photodiodes approaching cryogenic radiometer uncertainty.pdf

accesso aperto

Tipologia: final published article (publisher’s version)
Licenza: Creative Commons
Dimensione 3 MB
Formato Adobe PDF
3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11696/76400
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact