Polyethylene (PE) has emerged recently as a promising polymer for incorporation in wearable textiles owing to its high infrared transparency and tuneable visible opacity, which allows the human body to cool via thermal radiation, potentially saving energy on building refrigeration. Here, we show that single-material PE fabrics may offer a sustainable, high-performance alternative to conventional textiles, extending beyond radiative cooling. PE fabrics exhibit ultra-light weight, low material cost and recyclability. Industrial materials sustainability (Higg) index calculations predict a low environmental footprint for PE fabrics in the production phase. We engineered PE fibres, yarns and fabrics to achieve efficient water wicking and fast-drying performance which, combined with their excellent stain resistance, offer promise in reducing energy and water consumption as well as the environmental footprint of PE textiles in their use phase. Unlike previously explored nanoporous PE materials, the high-performance PE fabrics in this study are made from fibres melt spun and woven on standard equipment used by the textile industry worldwide and do not require any chemical coatings. We further demonstrate that these PE fibres can be dry coloured during fabrication, resulting in dramatic water savings without masking the PE molecular fingerprints scanned during the automated recycling process.The textile industry is one of the largest polluters. Here the authors show that polyethylene is a sustainable alternative textile with water wicking and fast-drying performance. The fabrication of polyethylene fabrics is compatible with standard equipment and could be dry-coloured, further reducing water consumption.

Sustainable polyethylene fabrics with engineered moisture transport for passive cooling / Alberghini, Matteo; Hong, Seongdon; Marcelo Lozano, L.; Korolovych, Volodymyr; Huang, Yi; Signorato, Francesco; Hadi Zandavi, S.; Fucetola, Corey; Uluturk, Ihsan; Tolstorukov, Michael Y.; Chen, Gang; Asinari, Pietro; Osgood, Richard M.; Fasano, Matteo; Boriskina, Svetlana V.. - In: NATURE SUSTAINABILITY. - ISSN 2398-9629. - 4:8(2021), pp. 715-724. [10.1038/s41893-021-00688-5]

Sustainable polyethylene fabrics with engineered moisture transport for passive cooling

Pietro Asinari;
2021

Abstract

Polyethylene (PE) has emerged recently as a promising polymer for incorporation in wearable textiles owing to its high infrared transparency and tuneable visible opacity, which allows the human body to cool via thermal radiation, potentially saving energy on building refrigeration. Here, we show that single-material PE fabrics may offer a sustainable, high-performance alternative to conventional textiles, extending beyond radiative cooling. PE fabrics exhibit ultra-light weight, low material cost and recyclability. Industrial materials sustainability (Higg) index calculations predict a low environmental footprint for PE fabrics in the production phase. We engineered PE fibres, yarns and fabrics to achieve efficient water wicking and fast-drying performance which, combined with their excellent stain resistance, offer promise in reducing energy and water consumption as well as the environmental footprint of PE textiles in their use phase. Unlike previously explored nanoporous PE materials, the high-performance PE fabrics in this study are made from fibres melt spun and woven on standard equipment used by the textile industry worldwide and do not require any chemical coatings. We further demonstrate that these PE fibres can be dry coloured during fabrication, resulting in dramatic water savings without masking the PE molecular fingerprints scanned during the automated recycling process.The textile industry is one of the largest polluters. Here the authors show that polyethylene is a sustainable alternative textile with water wicking and fast-drying performance. The fabrication of polyethylene fabrics is compatible with standard equipment and could be dry-coloured, further reducing water consumption.
File in questo prodotto:
File Dimensione Formato  
s41893-021-00688-5.pdf

non disponibili

Tipologia: final published article (publisher’s version)
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.92 MB
Formato Adobe PDF
2.92 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Sustainable+polyethylene+fabrics_postprint.pdf

Open Access dal 16/09/2021

Tipologia: accepted manuscript (author’s post-print)
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 1.92 MB
Formato Adobe PDF
1.92 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11696/75419
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 98
  • ???jsp.display-item.citation.isi??? 94
social impact