When a system crosses a second-order phase transition on a finite timescale, spontaneous symmetry breaking can cause the development of domains with independent order parameters, which then grow and approach each other creating boundary defects. This is known as the Kibble-Zurek mechanism. Originally introduced in cosmology, it applies to both classical and quantum phase transitions, in a wide variety of physical systems. Here we report on the spontaneous creation of solitons in Bose-Einstein condensates through the Kibble-Zurek mechanism. We measure the power-law dependence of defect number on the quench time, and show that lower atomic densities enhance defect formation. These results provide a promising test bed for the determination of critical exponents in Bose-Einstein condensates.

Spontaneous creation of Kibble–Zurek solitons in a Bose–Einstein condensate / Lamporesi, Giacomo; Donadello, Simone; Serafini, Simone; Dalfovo, Franco; Ferrari, Gabriele. - In: NATURE PHYSICS. - ISSN 1745-2473. - 9:10(2013), pp. 656-660. [10.1038/nphys2734]

Spontaneous creation of Kibble–Zurek solitons in a Bose–Einstein condensate

Donadello, Simone;
2013

Abstract

When a system crosses a second-order phase transition on a finite timescale, spontaneous symmetry breaking can cause the development of domains with independent order parameters, which then grow and approach each other creating boundary defects. This is known as the Kibble-Zurek mechanism. Originally introduced in cosmology, it applies to both classical and quantum phase transitions, in a wide variety of physical systems. Here we report on the spontaneous creation of solitons in Bose-Einstein condensates through the Kibble-Zurek mechanism. We measure the power-law dependence of defect number on the quench time, and show that lower atomic densities enhance defect formation. These results provide a promising test bed for the determination of critical exponents in Bose-Einstein condensates.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11696/73462
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 172
  • ???jsp.display-item.citation.isi??? 169
social impact