Grabbing and holding objects at the microscale is a complex function, even for microscopic living animals. Inspired by the hominid-type hand, a microscopic equivalent able to catch microelements is engineered. This microhand is light sensitive and can be either remotely controlled by optical illumination or can act autonomously and grab small particles on the basis of their optical properties. Since the energy is delivered optically, without the need for wires or batteries, the artificial hand can be shrunk down to the micrometer scale. Soft material is used, in particular, a custom-made liquid-crystal network that is patterned by a photolithographic technique. The elastic reshaping properties of this material allow finger movement, using environmental light as the only energy source. The hand can be either controlled externally (via the light field), or else the conditions in which it autonomously grabs a particle in its vicinity can be created. This microrobot has the unique feature that it can distinguish between particles of different colors and gray levels. The realization of this autonomous hand constitutes a crucial element in the development of microscopic creatures that can perform tasks without human intervention and self-organized automation at the micrometer scale.

Photonic Microhand with Autonomous Action / Martella, D.; Nocentini, S.; Nuzhdin, D.; Parmeggiani, C.; Wiersma, D. S.. - In: ADVANCED MATERIALS. - ISSN 0935-9648. - 29:42(2017), p. 1704047. [10.1002/adma.201704047]

Photonic Microhand with Autonomous Action

Martella, D.;Nocentini, S.;Parmeggiani, C.;Wiersma, D. S.
2017

Abstract

Grabbing and holding objects at the microscale is a complex function, even for microscopic living animals. Inspired by the hominid-type hand, a microscopic equivalent able to catch microelements is engineered. This microhand is light sensitive and can be either remotely controlled by optical illumination or can act autonomously and grab small particles on the basis of their optical properties. Since the energy is delivered optically, without the need for wires or batteries, the artificial hand can be shrunk down to the micrometer scale. Soft material is used, in particular, a custom-made liquid-crystal network that is patterned by a photolithographic technique. The elastic reshaping properties of this material allow finger movement, using environmental light as the only energy source. The hand can be either controlled externally (via the light field), or else the conditions in which it autonomously grabs a particle in its vicinity can be created. This microrobot has the unique feature that it can distinguish between particles of different colors and gray levels. The realization of this autonomous hand constitutes a crucial element in the development of microscopic creatures that can perform tasks without human intervention and self-organized automation at the micrometer scale.
ADVANCED MATERIALS
open
File in questo prodotto:
File Dimensione Formato  
Photonic microhand.pdf

non disponibili

Tipologia: Versione editoriale
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.6 MB
Formato Adobe PDF
1.6 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
PRE PRINT - Photonic microhand.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11696/66829
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 78
  • ???jsp.display-item.citation.isi??? 86
social impact