We study a resonant Bose-Fermi mixture at zero temperature by using the fixed-node diffusion Monte Carlo method. We explore the system from weak to strong boson-fermion interaction, for different concentrations of the bosons relative to the fermion component. We focus on the case where the boson density n(B) is smaller than the fermion density n(F), for which a first-order quantum phase transition is found from a state with condensed bosons immersed in a Fermi sea, to a Fermi-Fermi mixture of composite fermions and unpaired fermions. We obtain the equation of state and the phase diagram, and we find that the region of phase separation shrinks to zero for vanishing n(B).

Quantum Monte Carlo study of a resonant Bose-Fermi mixture / Bertaina, G; Fratini, E; Giorgini, S; Pieri, P. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 110:11(2013), p. 115303. [10.1103/PhysRevLett.110.115303]

Quantum Monte Carlo study of a resonant Bose-Fermi mixture

Bertaina, G;
2013

Abstract

We study a resonant Bose-Fermi mixture at zero temperature by using the fixed-node diffusion Monte Carlo method. We explore the system from weak to strong boson-fermion interaction, for different concentrations of the bosons relative to the fermion component. We focus on the case where the boson density n(B) is smaller than the fermion density n(F), for which a first-order quantum phase transition is found from a state with condensed bosons immersed in a Fermi sea, to a Fermi-Fermi mixture of composite fermions and unpaired fermions. We obtain the equation of state and the phase diagram, and we find that the region of phase separation shrinks to zero for vanishing n(B).
File in questo prodotto:
File Dimensione Formato  
Bertaina et al_2013_Quantum Monte Carlo Study of a Resonant Bose-Fermi Mixture.pdf

solo utenti autorizzati

Tipologia: final published article (publisher’s version)
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 248.97 kB
Formato Adobe PDF
248.97 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11696/60851
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 35
social impact