The magnetic properties of sintered Mn-Zn ferrites, Co2+ enriched by addition of CoO up to 6000 ppm, were measured in ring samples for a broad range of peak polarization values (2 mT – 200 mT) and frequencies (dc – 1 GHz). The results were analyzed by separating the contributions to the magnetization process of domain-wall motion and magnetization rotation, and applying the concept of loss decomposition. By determining the value and behavior of the rotational permeability µrot as a function of the CoO content, we obtain the average effective magnetic anisotropy and its effect on the loss. We thus identify the hysteresis (quasi-static) Wh, rotational Wrot, and excess Wexc loss components and their dependence on CoO. The quasi-static loss Wh, the domain wall permeability µdw, and have minima, and µrot has a maximum, for CoO in the range 3000 – 4000 ppm. The rotational loss by spin damping Wrot,sd is calculated by use of the Landau-Lifshitz equation by assuming distributed anisotropy field amplitudes. Wrot,sd covers the experimental loss behavior beyond about 1 MHz. Wexc and Wh, both directly generated by the moving domain walls, share the dissipative response of the material at lower frequencies and show similar trends versus CoO content. It is concluded that the modulation of the magnetic anisotropy of Mn-Zn ferrites through Co2+ enrichment, leading to maximum magnetic softening for CoO = 3000 – 4000 ppm, can be assessed in terms of separate effects of domain wall motion and moment rotations and their related dissipative properties .

Magnetic Loss Decomposition in Co-Doped Mn-Zn Ferrites / Dobak, Samuel; Beatrice, Cinzia; Fiorillo, Fausto; Tsakaloudi, Vasiliki; Ragusa, Carlo. - In: IEEE MAGNETICS LETTERS. - ISSN 1949-307X. - 10:(2019), pp. 1-5. [10.1109/LMAG.2018.2881108]

Magnetic Loss Decomposition in Co-Doped Mn-Zn Ferrites

Beatrice, Cinzia
Data Curation
;
Fiorillo, Fausto
Writing – Original Draft Preparation
;
2019

Abstract

The magnetic properties of sintered Mn-Zn ferrites, Co2+ enriched by addition of CoO up to 6000 ppm, were measured in ring samples for a broad range of peak polarization values (2 mT – 200 mT) and frequencies (dc – 1 GHz). The results were analyzed by separating the contributions to the magnetization process of domain-wall motion and magnetization rotation, and applying the concept of loss decomposition. By determining the value and behavior of the rotational permeability µrot as a function of the CoO content, we obtain the average effective magnetic anisotropy and its effect on the loss. We thus identify the hysteresis (quasi-static) Wh, rotational Wrot, and excess Wexc loss components and their dependence on CoO. The quasi-static loss Wh, the domain wall permeability µdw, and have minima, and µrot has a maximum, for CoO in the range 3000 – 4000 ppm. The rotational loss by spin damping Wrot,sd is calculated by use of the Landau-Lifshitz equation by assuming distributed anisotropy field amplitudes. Wrot,sd covers the experimental loss behavior beyond about 1 MHz. Wexc and Wh, both directly generated by the moving domain walls, share the dissipative response of the material at lower frequencies and show similar trends versus CoO content. It is concluded that the modulation of the magnetic anisotropy of Mn-Zn ferrites through Co2+ enrichment, leading to maximum magnetic softening for CoO = 3000 – 4000 ppm, can be assessed in terms of separate effects of domain wall motion and moment rotations and their related dissipative properties .
File in questo prodotto:
File Dimensione Formato  
08533361.pdf

solo utenti autorizzati

Tipologia: final published article (publisher’s version)
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.51 MB
Formato Adobe PDF
1.51 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
IEEE Magn. Lett., vol. 10 (2019)_postprint.pdf

accesso aperto

Tipologia: accepted manuscript (author’s post-print)
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 1 MB
Formato Adobe PDF
1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11696/60023
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact