Block copolymer (BCP) self-assembly is expected to complement conventional optical lithography for the fabrication of next-generation microelectronic devices. In this regard, silicon-containing BCPs with a high Flory-Huggins interaction parameter (χ) are extremely appealing because they form high-resolution nanostructures with characteristic dimensions below 10 nm. However, due to their slow self-assembly kinetics and low thermal stability, these silicon-containing high-χ BCPs are usually processed by solvent vapor annealing or in solvent-rich ambient at a low annealing temperature, significantly increasing the complexity of the facilities and of the procedures. In this work, the self-assembly of cylinder-forming polystyrene-block-poly(dimethylsiloxane-random-vinylmethylsiloxane) (PS-b-P(DMS-r-VMS)) BCP on flat substrates is promoted by means of a simple thermal treatment at high temperatures. Homogeneous PS-b-P(DMS-r-VMS) thin films covering the entire sample surface are obtained without any evidence of dewetting phenomena. The BCP arranges in a single layer of cylindrical P(DMS-r-VMS) nanostructures parallel-oriented with respect to the substrate. By properly adjusting the surface functionalization, the heating rate, the annealing temperature, and the processing time, one can obtain correlation length values larger than 1 μm in a time scale fully compatible with the stringent requirements of the microelectronic industry.
Micrometer-Scale Ordering of Silicon-Containing Block Copolymer Thin Films via High-Temperature Thermal Treatments / Giammaria, Tommaso Jacopo; Ferrarese Lupi, Federico; Seguini, Gabriele; Perego, Michele; Vita, Francesco; Francescangeli, Oriano; Wenning, Brandon; Ober, Christopher K; Sparnacci, Katia; Antonioli, Diego; Gianotti, Valentina; Laus, Michele. - In: ACS APPLIED MATERIALS & INTERFACES. - ISSN 1944-8244. - 8:15(2016), pp. 9897-908-9908. [10.1021/acsami.6b02300]
Micrometer-Scale Ordering of Silicon-Containing Block Copolymer Thin Films via High-Temperature Thermal Treatments
Ferrarese Lupi, Federico;
2016
Abstract
Block copolymer (BCP) self-assembly is expected to complement conventional optical lithography for the fabrication of next-generation microelectronic devices. In this regard, silicon-containing BCPs with a high Flory-Huggins interaction parameter (χ) are extremely appealing because they form high-resolution nanostructures with characteristic dimensions below 10 nm. However, due to their slow self-assembly kinetics and low thermal stability, these silicon-containing high-χ BCPs are usually processed by solvent vapor annealing or in solvent-rich ambient at a low annealing temperature, significantly increasing the complexity of the facilities and of the procedures. In this work, the self-assembly of cylinder-forming polystyrene-block-poly(dimethylsiloxane-random-vinylmethylsiloxane) (PS-b-P(DMS-r-VMS)) BCP on flat substrates is promoted by means of a simple thermal treatment at high temperatures. Homogeneous PS-b-P(DMS-r-VMS) thin films covering the entire sample surface are obtained without any evidence of dewetting phenomena. The BCP arranges in a single layer of cylindrical P(DMS-r-VMS) nanostructures parallel-oriented with respect to the substrate. By properly adjusting the surface functionalization, the heating rate, the annealing temperature, and the processing time, one can obtain correlation length values larger than 1 μm in a time scale fully compatible with the stringent requirements of the microelectronic industry.File | Dimensione | Formato | |
---|---|---|---|
2016_ACS_AMI_PDMS_EditorialVersion.pdf
non disponibili
Tipologia:
final published article (publisher’s version)
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
7.85 MB
Formato
Adobe PDF
|
7.85 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2016_ACS_AMI_PDMS_SubmittedVersion.pdf
accesso aperto
Tipologia:
submitted version (author’s pre-print)
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
2.07 MB
Formato
Adobe PDF
|
2.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.