Block copolymers (BCPs) are emerging as a cost-effective nanofabrication tool to complement conventional optical lithography because they self-assemble in highly ordered polymeric templates with well-defined sub-20-nm periodic features. In this context, cylinder-forming polystyrene-block-poly(methyl methacrylate) BCPs are revealed as an interesting material of choice because the orientation of the nanostructures with respect to the underlying substrate can be effectively controlled by a poly(styrene-random-methyl methacrylate) random copolymer (RCP) brush layer grafted to the substrate prior to BCP deposition. In this work, we investigate the self-assembly process and lateral order evolution in RCP + BCP systems consisting of cylinder-forming PS-b-PMMA (67 kg mol-1, PS fraction of ∼70%) films with thicknesses of 30, 70, 100, and 130 nm deposited on RCP brush layers having thicknesses ranging from 2 to 20 nm. The self-assembly process is promoted by a rapid thermal processing machine operating at 250 °C for 300 s. The level of lateral order is determined by measuring the correlation length (ξ) in the self-assembled BCP films. Moreover, the amount of solvent (Φ) retained in the RCP + BCP systems is measured as a function of the thicknesses of the RCP and BCP layers, respectively. In the 30-nm-thick BCP films, an increase in Φ as a function of the thickness of the RCP brush layer significantly affects the self-assembly kinetics and the final extent of the lateral order in the BCP films. Conversely, no significant variations of ξ are observed in the 70-, 100-, and 130-nm-thick BCP films with increasing Φ.

Effect of Entrapped Solvent on the Evolution of Lateral Order in Self-Assembled P(S-r-MMA)/PS-b-PMMA Systems with Different Thicknesses / Giammaria, Tommaso Jacopo; Ferrarese Lupi, Federico; Seguini, Gabriele; Sparnacci, Katia; Antonioli, Diego; Gianotti, Valentina; Laus, Michele; Perego, Michele. - In: ACS APPLIED MATERIALS & INTERFACES. - ISSN 1944-8244. - 9:37(2017), pp. 31215-31223-31223. [10.1021/acsami.6b14332]

Effect of Entrapped Solvent on the Evolution of Lateral Order in Self-Assembled P(S-r-MMA)/PS-b-PMMA Systems with Different Thicknesses

Ferrarese Lupi, Federico;
2017

Abstract

Block copolymers (BCPs) are emerging as a cost-effective nanofabrication tool to complement conventional optical lithography because they self-assemble in highly ordered polymeric templates with well-defined sub-20-nm periodic features. In this context, cylinder-forming polystyrene-block-poly(methyl methacrylate) BCPs are revealed as an interesting material of choice because the orientation of the nanostructures with respect to the underlying substrate can be effectively controlled by a poly(styrene-random-methyl methacrylate) random copolymer (RCP) brush layer grafted to the substrate prior to BCP deposition. In this work, we investigate the self-assembly process and lateral order evolution in RCP + BCP systems consisting of cylinder-forming PS-b-PMMA (67 kg mol-1, PS fraction of ∼70%) films with thicknesses of 30, 70, 100, and 130 nm deposited on RCP brush layers having thicknesses ranging from 2 to 20 nm. The self-assembly process is promoted by a rapid thermal processing machine operating at 250 °C for 300 s. The level of lateral order is determined by measuring the correlation length (ξ) in the self-assembled BCP films. Moreover, the amount of solvent (Φ) retained in the RCP + BCP systems is measured as a function of the thicknesses of the RCP and BCP layers, respectively. In the 30-nm-thick BCP films, an increase in Φ as a function of the thickness of the RCP brush layer significantly affects the self-assembly kinetics and the final extent of the lateral order in the BCP films. Conversely, no significant variations of ξ are observed in the 70-, 100-, and 130-nm-thick BCP films with increasing Φ.
ACS APPLIED MATERIALS & INTERFACES
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11696/56921
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 12
social impact