In this paper we employ non equilibrium thermodynamics of fluxes and forces to describe magnetization and heat transport. By the theory we are able to identify the thermodynamic driving force of the magnetization current as the gradient of the effective field ▿H∗. This definition permits to define the spin Seebeck coefficient ϵM which relates ▿H∗ and the temperature gradient ▿T. By applying the theory to the geometry of the longitudinal spin Seebeck effect we are able to obtain the optimal conditions for generating large magnetization currents. Furthermore, by using the results of recent experiments, we obtain an order of magnitude for the value of ϵM ∼ 10-2 TK-1 for yttrium iron garnet (Y3Fe5O12).

Non-equilibrium Thermodynamics of the Longitudinal Spin Seebeck Effect / Basso, Vittorio; Ferraro, Elena; Sola, Alessandro; Magni, Alessandro; Kuepferling, Michaela; Pasquale, Massimo. - In: PHYSICS PROCEDIA. - ISSN 1875-3892. - 75:(2015), pp. 939-947. [10.1016/j.phpro.2015.12.129]

Non-equilibrium Thermodynamics of the Longitudinal Spin Seebeck Effect

BASSO, VITTORIO;Sola, Alessandro;MAGNI, ALESSANDRO;KUEPFERLING, MICHAELA;PASQUALE, MASSIMO
2015

Abstract

In this paper we employ non equilibrium thermodynamics of fluxes and forces to describe magnetization and heat transport. By the theory we are able to identify the thermodynamic driving force of the magnetization current as the gradient of the effective field ▿H∗. This definition permits to define the spin Seebeck coefficient ϵM which relates ▿H∗ and the temperature gradient ▿T. By applying the theory to the geometry of the longitudinal spin Seebeck effect we are able to obtain the optimal conditions for generating large magnetization currents. Furthermore, by using the results of recent experiments, we obtain an order of magnitude for the value of ϵM ∼ 10-2 TK-1 for yttrium iron garnet (Y3Fe5O12).
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S187538921501768X-main.pdf

accesso aperto

Tipologia: final published article (publisher’s version)
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 222.59 kB
Formato Adobe PDF
222.59 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11696/54490
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact