We study in detail a system of two interferometers aimed at detecting extremely faint phase fluctuations. This system can represent a breakthrough for detecting a faint correlated signal that would remain otherwise undetectable even using the most sensitive individual interferometric devices, as in the case of so-called holographic noise. The signature of this kind of noise emerges as a correlation between the output signals of the interferometers. On the other hand, when holographic noise is absent one expects uncorrelated signals since the time-averaged fluctuations due to shot noise and other independent contributions vanish (though limiting the overall sensitivity).We showhowinjecting quantum light in the free ports of the interferometers can reduce the photon noise of the system beyond the shot noise, enhancing the resolution in the phase-correlation estimation.We analyze the use of both the two-mode squeezed vacuum and two independent squeezed states. Our results confirm the benefit of using squeezed beams together with strong coherent beams in interferometry. We also investigate the possible use of the two-mode squeezed vacuum, discovering interesting and unexplored areas of application of bipartite entanglement, in particular the possibility of reaching in principle a surprising uncertainty reduction.
One- and two-mode squeezed light in correlated interferometry / RUO BERCHERA, Ivano; Degiovanni, IVO PIETRO; Olivares, S.; Samantaray, N.; Traina, Paolo; Genovese, Marco. - In: PHYSICAL REVIEW A. - ISSN 1050-2947. - 92:5(2015). [10.1103/PhysRevA.92.053821]
One- and two-mode squeezed light in correlated interferometry
RUO BERCHERA, IVANO;DEGIOVANNI, IVO PIETRO;TRAINA, PAOLO;GENOVESE, MARCO
2015
Abstract
We study in detail a system of two interferometers aimed at detecting extremely faint phase fluctuations. This system can represent a breakthrough for detecting a faint correlated signal that would remain otherwise undetectable even using the most sensitive individual interferometric devices, as in the case of so-called holographic noise. The signature of this kind of noise emerges as a correlation between the output signals of the interferometers. On the other hand, when holographic noise is absent one expects uncorrelated signals since the time-averaged fluctuations due to shot noise and other independent contributions vanish (though limiting the overall sensitivity).We showhowinjecting quantum light in the free ports of the interferometers can reduce the photon noise of the system beyond the shot noise, enhancing the resolution in the phase-correlation estimation.We analyze the use of both the two-mode squeezed vacuum and two independent squeezed states. Our results confirm the benefit of using squeezed beams together with strong coherent beams in interferometry. We also investigate the possible use of the two-mode squeezed vacuum, discovering interesting and unexplored areas of application of bipartite entanglement, in particular the possibility of reaching in principle a surprising uncertainty reduction.File | Dimensione | Formato | |
---|---|---|---|
PhysRevA.92.053821.pdf
solo utenti autorizzati
Tipologia:
final published article (publisher’s version)
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.23 MB
Formato
Adobe PDF
|
1.23 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1501.07516.pdf
accesso aperto
Tipologia:
submitted version (author’s pre-print)
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
513.46 kB
Formato
Adobe PDF
|
513.46 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.