Abstract. In the present work we report about the investigation of the conduction mechanism of sp2 carbon micro-channels in single crystal diamond. The structures are fabricated with a technique which employs a MeV focused ion-beam to damage diamond in conjunction with variable thickness masks. This process changes significantly the structural properties of the target material, because the ion nuclear energy loss induces carbon conversion from sp3 to sp2 state mainly at the end of range of the ions (few micrometers). Furthermore, placing a mask with increasing thickness on the sample it is possible to modulate the channels depth at their endpoints, allowing their electrical connection with the surface. A single-crystal HPHT diamond sample was implanted with 1.8 MeV He+ ions at room temperature, the implantation fluence was set in the range 2.1 × 10 16 −6.3 × 10 17 ions cm−2 , determining the formation of micro-channels with a graded level of damage extending down to a depth of about 3 μm. After deposition of metallic contacts at the channels’ endpoints, the electrical characterization was performed measuring the I -V curves at variable temperatures in the 80 −690 K range. The Variable Range Hopping model was used to fit the experimental data in the ohmic regime, allowing the estimation of characteristic parameters such as the density of localized states at the Fermi level. A value of 5.5 × 10 17 states cm−3 eV−1 was obtained, in satisfactory agreement with values previously reported in literature. The power-law dependence between current and voltage is consistent with the space charge limited mechanism at moderate electric fields

Direct fabrication and IV characterization of sub-surface conductive channels in diamond with MeV ion implantation / Olivero, P; Amato, Giampiero; Bellotti, F; Borini, S; LO GIUDICE, A; Picollo, F; Vittone, E.. - In: THE EUROPEAN PHYSICAL JOURNAL. B, CONDENSED MATTER PHYSICS. - ISSN 1434-6028. - 75:(2010), pp. 127-132. [10.1140/epjb/e2009-00427-5]

Direct fabrication and IV characterization of sub-surface conductive channels in diamond with MeV ion implantation

AMATO, GIAMPIERO;
2010

Abstract

Abstract. In the present work we report about the investigation of the conduction mechanism of sp2 carbon micro-channels in single crystal diamond. The structures are fabricated with a technique which employs a MeV focused ion-beam to damage diamond in conjunction with variable thickness masks. This process changes significantly the structural properties of the target material, because the ion nuclear energy loss induces carbon conversion from sp3 to sp2 state mainly at the end of range of the ions (few micrometers). Furthermore, placing a mask with increasing thickness on the sample it is possible to modulate the channels depth at their endpoints, allowing their electrical connection with the surface. A single-crystal HPHT diamond sample was implanted with 1.8 MeV He+ ions at room temperature, the implantation fluence was set in the range 2.1 × 10 16 −6.3 × 10 17 ions cm−2 , determining the formation of micro-channels with a graded level of damage extending down to a depth of about 3 μm. After deposition of metallic contacts at the channels’ endpoints, the electrical characterization was performed measuring the I -V curves at variable temperatures in the 80 −690 K range. The Variable Range Hopping model was used to fit the experimental data in the ohmic regime, allowing the estimation of characteristic parameters such as the density of localized states at the Fermi level. A value of 5.5 × 10 17 states cm−3 eV−1 was obtained, in satisfactory agreement with values previously reported in literature. The power-law dependence between current and voltage is consistent with the space charge limited mechanism at moderate electric fields
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11696/32661
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact