Two ferrofluid inks for jet-printing, containing magnetite NPs of slightly different average radius (sample A: 6 nm; sample B: 8 nm) were prepared by adding a dispersion of magnetite nanopowders in n-hexane to an insulating ink. Isothermal magnetization loops of inks were measured by means of a vibrating sample magnetometer in the temperature interval 5-300 K up to 70 kOe. The inks were then ejected at room temperature on standard paper by means of either a thermal ink jet head (TIJ; sample A) or a piezoelectric ink jet head (PIJ; sample B). Magnetic properties of prints on paper (FC/ZFC curves, isothermal magnetic loops and related hysteretic properties) were measured between 10 and 300 K using an alternating gradient force magnetometer up to 20 kOe. The inks display a different magnetic behavior with respect to both prints. In particular, the dispersed NPs are characterized by an effective radius (and ensuing magnetic interaction) larger than expected on the basis of the properties of the starting powders. Instead, the NP radii in both prints are closer to the starting values. The printed magnetic films show an almost perfect superparamagnetic (SP) response around room temperature; however, at temperatures lower than 100 K the SP scaling is not observed and both samples behave as interacting superparamagnetic (ISP) materials. The evolution from the SP to the ISP regime is marked by a steady increase in the hysteretic properties of both samples. Particular attention will be paid to the study of magnetic interactions occurring among NPs. The effect of the ejection process on the degree of aggregation of magnetite NPs will be here studied.

Magnetic properties of jet-printer inks containing dispersed magnetite nanoparticles / Tiberto, PAOLA MARIA; Barrera, G; Celegato, F; Coisson, Marco; Chiolerio, A; Martino, P; Pandolfi, P; Allia, P.. - In: THE EUROPEAN PHYSICAL JOURNAL. B, CONDENSED MATTER PHYSICS. - ISSN 1434-6028. - 86:4(2013). [10.1140/epjb/e2013-30983-8]

Magnetic properties of jet-printer inks containing dispersed magnetite nanoparticles

TIBERTO, PAOLA MARIA;BARRERA G;CELEGATO F;COISSON, MARCO;
2013

Abstract

Two ferrofluid inks for jet-printing, containing magnetite NPs of slightly different average radius (sample A: 6 nm; sample B: 8 nm) were prepared by adding a dispersion of magnetite nanopowders in n-hexane to an insulating ink. Isothermal magnetization loops of inks were measured by means of a vibrating sample magnetometer in the temperature interval 5-300 K up to 70 kOe. The inks were then ejected at room temperature on standard paper by means of either a thermal ink jet head (TIJ; sample A) or a piezoelectric ink jet head (PIJ; sample B). Magnetic properties of prints on paper (FC/ZFC curves, isothermal magnetic loops and related hysteretic properties) were measured between 10 and 300 K using an alternating gradient force magnetometer up to 20 kOe. The inks display a different magnetic behavior with respect to both prints. In particular, the dispersed NPs are characterized by an effective radius (and ensuing magnetic interaction) larger than expected on the basis of the properties of the starting powders. Instead, the NP radii in both prints are closer to the starting values. The printed magnetic films show an almost perfect superparamagnetic (SP) response around room temperature; however, at temperatures lower than 100 K the SP scaling is not observed and both samples behave as interacting superparamagnetic (ISP) materials. The evolution from the SP to the ISP regime is marked by a steady increase in the hysteretic properties of both samples. Particular attention will be paid to the study of magnetic interactions occurring among NPs. The effect of the ejection process on the degree of aggregation of magnetite NPs will be here studied.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11696/31759
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 45
social impact