Studying the depolarization rate of light emerging from a turbid medium holds promise for the non-invasive characterization of its single-scattering properties, with relevant application in the quality analysis of different specimens or for diagnostic purposes in the biomedical field, to name a few. However, irrespective of sample geometry, the dynamics of light depolarization takes place on a time scale of few ps, which is too fast for traditional detection methods. Here, we present experimental results on the time-domain evolution of the depolarization ratio of light that is diffusely reflected from a scattering medium, using linearly polarized fs pulses in an all-optical gating scheme. Time-resolved reflectance curves are recorded in the parallel and perpendicular polarization channels relative to the illumination beam, granting direct access to the depolarization rate. We demonstrate our experimental approach on a lipid emulsion, fitting the data with a polarized Monte Carlo simulation to retrieve the average particle size and scattering asymmetry factor using just two time-domain reflectance measurements in a semi-infinite geometry.
Time-resolved depolarization analysis of back-scattered light / Pini, Ernesto; Martelli, Fabrizio; Wiersma, Diederik; Gatto, Alexander; Schäfer, Henrik; Pattelli, Lorenzo. - In: PROGRESS IN BIOMEDICAL OPTICS AND IMAGING. - ISSN 1605-7422. - 12845:(2024). (Intervento presentato al convegno SPIE BIOS 2024 tenutosi a San Francisco, California, United States nel 27-28/01/2024) [10.1117/12.3001002].
Time-resolved depolarization analysis of back-scattered light
Wiersma, Diederik;Pattelli, Lorenzo
2024
Abstract
Studying the depolarization rate of light emerging from a turbid medium holds promise for the non-invasive characterization of its single-scattering properties, with relevant application in the quality analysis of different specimens or for diagnostic purposes in the biomedical field, to name a few. However, irrespective of sample geometry, the dynamics of light depolarization takes place on a time scale of few ps, which is too fast for traditional detection methods. Here, we present experimental results on the time-domain evolution of the depolarization ratio of light that is diffusely reflected from a scattering medium, using linearly polarized fs pulses in an all-optical gating scheme. Time-resolved reflectance curves are recorded in the parallel and perpendicular polarization channels relative to the illumination beam, granting direct access to the depolarization rate. We demonstrate our experimental approach on a lipid emulsion, fitting the data with a polarized Monte Carlo simulation to retrieve the average particle size and scattering asymmetry factor using just two time-domain reflectance measurements in a semi-infinite geometry.File | Dimensione | Formato | |
---|---|---|---|
1284502_submitted.pdf
accesso aperto
Descrizione: submitted version
Tipologia:
submitted version (author’s pre-print)
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
413.59 kB
Formato
Adobe PDF
|
413.59 kB | Adobe PDF | Visualizza/Apri |
1284502.pdf
non disponibili
Descrizione: main manuscript
Tipologia:
final published article (publisher’s version)
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
416.16 kB
Formato
Adobe PDF
|
416.16 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.