The theory of Quantum Mechanics is one of the mainstay of modern physics, a well-established mathematical clockwork whose strength and accuracy in predictions are currently experienced in worldwide research laboratories. As a matter of fact, Quantum Mechanics laid the groundwork of a rich variety of studies ranging from solid state physics to cosmology, from bio-physics to particle physics. The up-to-date ability of manipulating single quantum states is paving the way for emergent quantum technologies as quantum information and computation, quantum communication, quantum metrology and quantum imaging. In spite of the impressive matemathical capacity, a long-standing debate is even revolving around the foundational axioms of this theory, the main bones of content being the non-local effects of entangled states, the wave function collapse and the concept of measurement in Quantum Mechanics, the macro-objectivation problem (the transition from a microscopic probabilistic world to a macroscopic deterministic world described by classical mechanics). Problems that, beyond their fundamental interest in basic science, now also concern the impact of these developing technologies. Without claiming to be complete, this article provides in outline the living matter concerning some of these problems, the implications of which extend deeply on the connection between entanglement and space-time structure.

Entanglement and Quantum non-locality: an experimental perspective / Avella, Alessio; Gramegna, Marco; Genovese, M.. - In: EPJ WEB OF CONFERENCES. - ISSN 2101-6275. - 58:(2013), pp. 01014.01014-1-01014.01014-10. (Intervento presentato al convegno The Time Machine Factory 2012 Conference tenutosi a Torino, Italy nel 14-19 Ottobre, 2012) [10.1051/epjconf/20135801014].

Entanglement and Quantum non-locality: an experimental perspective

AVELLA, ALESSIO;GRAMEGNA, MARCO;M. GENOVESE
2013

Abstract

The theory of Quantum Mechanics is one of the mainstay of modern physics, a well-established mathematical clockwork whose strength and accuracy in predictions are currently experienced in worldwide research laboratories. As a matter of fact, Quantum Mechanics laid the groundwork of a rich variety of studies ranging from solid state physics to cosmology, from bio-physics to particle physics. The up-to-date ability of manipulating single quantum states is paving the way for emergent quantum technologies as quantum information and computation, quantum communication, quantum metrology and quantum imaging. In spite of the impressive matemathical capacity, a long-standing debate is even revolving around the foundational axioms of this theory, the main bones of content being the non-local effects of entangled states, the wave function collapse and the concept of measurement in Quantum Mechanics, the macro-objectivation problem (the transition from a microscopic probabilistic world to a macroscopic deterministic world described by classical mechanics). Problems that, beyond their fundamental interest in basic science, now also concern the impact of these developing technologies. Without claiming to be complete, this article provides in outline the living matter concerning some of these problems, the implications of which extend deeply on the connection between entanglement and space-time structure.
2013
The Time Machine Factory 2012 Conference
14-19 Ottobre, 2012
Torino, Italy
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11696/33724
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact