The use of ultra-precise optical clocks in space (“master clocks”) will allow for a range of new applications in the fields of fundamental physics (tests of Einstein's theory of General Relativity, time and frequency metrology by means of the comparison of distant terrestrial clocks), geophysics (mapping of the gravitational potential of Earth), and astronomy (providing local oscillators for radio ranging and interferometry in space). Within the ELIPS-3 program of ESA, the “Space Optical Clocks” (SOC) project aims to install and to operate an optical lattice clock on the ISS towards the end of this decade, as a natural follow-on to the ACES mission, improving its performance by at least one order of magnitude. The payload is planned to include an optical lattice clock, as well as a frequency comb, a microwave link, and an optical link for comparisons of the ISS clock with ground clocks located in several countries and continents. Undertaking a necessary step towards optical clocks in space, the EU-FP7-SPACE-2010-1 project no. 263500 (SOC2) (2011-2015) aims at two “engineering confidence“, accurate transportable lattice optical clock demonstrators having relative frequency instability below 1×10 -15 at 1 s integration time and relative inaccuracy below 5×10 -17 . This goal performance is about 2 and 1 orders better in instability and inaccuracy, respectively, than today’s best transportable clocks. The devices will be based on trapped neutral ytterbium and strontium atoms. One device will be a breadboard. The two systems will be validated in laboratory environments and their performance will be established by comparison with laboratory optical clocks and primary frequency standards. In order to achieve the goals, SOC2 will develop the necessary laser systems - adapted in terms of power, linewidth, frequency stability, long-term reliability, and accuracy. Novel solutions with reduced space, power and mass requirements will be implemented. Some of the laser systems will be developed towards particularly high compactness and robustness levels. Also, the project will validate crucial laser components in relevant environments. In this paper we present the project and the results achieved during the first year

The Space Optical Clocks Project: Development of high-performance transportable and breadboard optical clocks and advanced subsystems / S., Schiller; A., Görlitz; A., Nevsky; S., Alighanbari; S., Vasilyev; C., Abou Jaoudeh; G., Mura; T., Franzen; U., Sterr; S., Falke; Lisdat, C. h.; E., Rasel; A., Kulosa; S., Bize; J., Lodewyck; G. M., Tino; N., Poli; M., Schioppo; K., Bongs; Y., Singh; P., Gill; G., Barwood; Y., Ovchinnikov; J., Stuhler; W., Kaenders; R., Holzwarth; A., Donati; S., Lecomte; Calonico, Davide; Levi, Filippo. - (2012), pp. 412-418. (Intervento presentato al convegno EFTF 2012 tenutosi a Gothenburg (Sweden) nel April 2012) [10.1109/EFTF.2012.6502414].

The Space Optical Clocks Project: Development of high-performance transportable and breadboard optical clocks and advanced subsystems

CALONICO, DAVIDE;LEVI, FILIPPO
2012

Abstract

The use of ultra-precise optical clocks in space (“master clocks”) will allow for a range of new applications in the fields of fundamental physics (tests of Einstein's theory of General Relativity, time and frequency metrology by means of the comparison of distant terrestrial clocks), geophysics (mapping of the gravitational potential of Earth), and astronomy (providing local oscillators for radio ranging and interferometry in space). Within the ELIPS-3 program of ESA, the “Space Optical Clocks” (SOC) project aims to install and to operate an optical lattice clock on the ISS towards the end of this decade, as a natural follow-on to the ACES mission, improving its performance by at least one order of magnitude. The payload is planned to include an optical lattice clock, as well as a frequency comb, a microwave link, and an optical link for comparisons of the ISS clock with ground clocks located in several countries and continents. Undertaking a necessary step towards optical clocks in space, the EU-FP7-SPACE-2010-1 project no. 263500 (SOC2) (2011-2015) aims at two “engineering confidence“, accurate transportable lattice optical clock demonstrators having relative frequency instability below 1×10 -15 at 1 s integration time and relative inaccuracy below 5×10 -17 . This goal performance is about 2 and 1 orders better in instability and inaccuracy, respectively, than today’s best transportable clocks. The devices will be based on trapped neutral ytterbium and strontium atoms. One device will be a breadboard. The two systems will be validated in laboratory environments and their performance will be established by comparison with laboratory optical clocks and primary frequency standards. In order to achieve the goals, SOC2 will develop the necessary laser systems - adapted in terms of power, linewidth, frequency stability, long-term reliability, and accuracy. Novel solutions with reduced space, power and mass requirements will be implemented. Some of the laser systems will be developed towards particularly high compactness and robustness levels. Also, the project will validate crucial laser components in relevant environments. In this paper we present the project and the results achieved during the first year
2012
EFTF 2012
April 2012
Gothenburg (Sweden)
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11696/33635
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? ND
social impact