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Many of the most advanced applications of semiconductor quantum dots (QDs) in quantum

information technology require a fine control of the QDs’ position and confinement potential,

which cannot be achieved with conventional growth techniques. In this work, a novel

and versatile approach for the fabrication of site-controlled QDs is presented. Hydrogen

incorporation in GaAsN results in the formation of N-2H and N-2H-H complexes, which

neutralize all the effects of N on GaAs, including the N-induced large reduction of the

band-gap energy. Starting from a fully hydrogenated GaAs/GaAsN:H/GaAs quantum well,

the N-H bonds located within the light spot generated by a Scanning Near-field Optical

Microscope tip were broken, thus obtaining site-controlled GaAsN QDs surrounded by

a barrier of GaAsN:H (laterally) and GaAs (above and below). By adjusting the laser

power density and exposure time, the optical properties of the QDs can be finely controlled

and optimized, tuning the quantum confinement energy over more than 100 meV and

resulting in the observation of single photon emission from both the exciton and biexciton

recombinations. This novel fabrication technique reached a position accuracy of 50 nm and

it can be easily applied to the realization of more complex nanostructures.

Keywords: Site-controlled quantum dots, single-photon emission, dilute nitrides, laser

writing
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Semiconductor quantum dots (QDs) have attracted increasing interest in the last decades. Thanks

to their tunable emission energy and to their narrow luminescence linewidth, they may find – and,

in some instances, already have found – possible applications in many fields1,2, from light-emitting

devices (e.g. LED and lasers) to biology, from photovoltaics to sensor devices. In addition, owing

to their ability to act as sources of non-classical light states, QDs might serve as the main building

blocks of several potentially ground-breaking devices, enabling the first practical implementation

of quantum information technology (e.g., quantum computation, quantum teleportation, quantum

cryptography)3. In particular, epitaxially grown semiconductor QDs, as opposed to other quantum

emitters such as single atoms or colloidal QDs, present the advantage of being natively embedded

within a solid-state matrix, which fixes their position and makes them uniquely suited for the

integration in electronic devices.4

Coupling QDs with photonic structures, and particularly with photonic crystal (PhC) microcav-

ities4,5, is a fundamental step towards the practical implementation of quantum devices. Indeed,

such a coupling can increase the radiative recombination rate of the QD4,5, thus increasing the

speed and brightness of the device and reducing the negative effects of dephasing6,7, thereby greatly

improving the performance of QDs as sources of entangled photons4,5. It can also help to couple

light into waveguides, with the goal of realizing all-integrated optical chips. The stochastic coupling

of self-assembled QDs to photonic crystal cavities has been demonstrated both in the weak8 and

strong coupling regimes9,10. On the other hand, for years, the strategy to deterministically align a

photonic crystal cavity to a single QD was simply based on the fabrication of the cavity after the

QD was first located by microscopy techniques11.

However, these approaches are not easily transferable to the fabrication of devices with the

ability to go beyond the proof-of-concept stage. A precondition for the fabrication of integrated

complex devices and their mass production is indeed the availability of a scalable, deterministic

technology for the fabrication of QDs that are spatially ordered, uniformly sized, and spectrally

matched with respect to the device architecture. This challenge cannot be met using conventional,

bottom-up growth techniques, which, however, currently give the best results in terms of the optical

properties of the resulting QDs. In particular, the main drawback of the most widely used standard

growth methods (i.e., Stranski-Krastanow and Droplet Epitaxy) can be identified with their lack of

control over the lateral position of each QD.4 As a reference, we can consider that in PhC cavities

the typical spatial full width at half maximum (FWHM) for the field at the antinode is slightly

smaller than the lattice constant of the PhC, which in turn is about 0.25λ, where λ is the wavelength
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in vacuum of the considered cavity mode. For typical systems operating at visible/NIR frequencies,

this means a spatial extension of about 200 nm.5 Therefore, the integration of a quantum emitter

with a PhC cavity will realistically require a spatial positioning accuracy better than 50 nm. As it

regards the required spectral matching between the QD and the cavity mode, giving an absolute

numeric threshold might be significantly more difficult, considering that the coupling depends on

several factors such as the quality factor (Q) of the mode and the QD-PhC cavity coupling strength

(g). However, the general consensus seems to indicate that a control of 1-2 meV at least, based on

typical QD-PhC systems, would be a reasonable requirement for the emission energy of the QD.5

In the last two decades, several methods have been developed to control the QD nucleation

position4. Perhaps the most successful approach is represented by the self-limited growth of QDs

into inverted pyramidal holes etched in a GaAs substrate12,13. This approach gave a record-low

inhomogeneous emission broadening of 1.4 meV14, and it was used for the integration of site-

controlled QDs with PhC cavities, showing weak coupling15–18. QDs grown in larger pyramids

(with typical size of 7.5 µm), not integrable in PhC cavities, have reached a very good homogeneous

broadening of 10 µeV19. The weak-coupling regime was recently achieved in other integrated

QD-PhC cavity systems, based on position-controlled QDs obtained by providing preferential sites

for the nucleation of self-assembled dots. Such nucleation sites can be defined, for example, by

growing InP pyramids by selective-area epitaxy20–22, or by patterning the substrate with nano-hole

arrays23–26. The main characteristics of these site-controlled QD fabrication techniques are reported

in Table 1. For the sake of completeness, we mention that up to now strong coupling was not

yet observed in site-controlled QDs coupled with photonic cavities, to the best of our knowledge.

Other approaches to the fabrication of site-controlled QDs, for which the integration with PhC

cavities is still to be demonstrated, include the self-organization of individual InAs QDs by scanning

tunneling probe-assisted nanolithography27; the “vicinal substrate” approach28; the nucleation of

InAs QDs on strain modulated buffer layers grown on submicron mesa array29; and quantum well

etching30. As we stated before, the optical properties of site-controlled QDs do not reach the quality

of self-assembled ones. However, it should be mentioned that the Purcell effect and resonant

excitation4 can be employed to enhance the effective quantum efficiency and to reduce the effects

of linewidth broadening, respectively.

Even though in principle all these nanofabrication methods are scalable, they all rely on complex

lithographic procedures, followed by often cumbersome processing steps in a clean room environ-

ment, such as wet or dry etching. In this work, we present a new method to fabricate site-controlled,
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Table 1. List of site-controlled QD fabrication techniques with their main properties: type of QDs, position

accuracy ∆x, inhomogeneous broadening ∆E, use of lithographic and etching processes.

Technique Type of QDs ∆x

(nm)

∆E

(meV)

Lith.+etch.

Pyramids21,22 InAs/InP 50 50 yes

Inv. Pyr.14,15 InGaAs/GaAs <50 1.4 yes

Nanoholes24,25 InAs/GaAs 80 70 yes

Masks+H31,32 GaAsN/GaAs 20 30 yes

This work GaAsN/GaAs 50 20 no

single-photon emitting QDs based on the effects of hydrogen on the properties of GaAsN (or other

dilute nitrides33,34, such as GaPN and InGaAsN) without the need for lithographic techniques or a

particularly controlled environment. As we will discuss in the following, this method combines

short fabrication times (about 1 s per QD) with high positioning accuracy (about 50 nm), in principle

allowing both for the realization of large, ordered QD arrays and for the precise placement of

individual QDs in the desired points of a photonic structure.

Dilute nitrides are a class of III-V semiconductor alloys, where N is present in a small percentage

(typically less than 4-5%) in the V sub-lattice34. The most representative material among them

is GaAs1−xNx. Other derived materials, like InGaAsN and InGaAsNSb, are very popular in

multijunction solar cells35 and telecommunication devices, mainly because their band gap value

can be tailored to match the wavelengths that optimize the performance of such devices (e.g.,

λ = 1.31-1.55 µm for telecommunications)33,36. Recently, the possible use of dilute nitrides in

spintronics has also been proposed37. Indeed, the introduction of nitrogen in GaAs, and in other

III-V semiconductors, strongly perturbs the conduction band structure, giving rise, among other

effects, to a large, tunable reduction of the band gap38,39 and to the modification of the electron

g-factor40. For instance, the band gap of GaAs0.989N0.011 is about 1.29 eV at 10 K, about 230 meV

lower than the GaAs band gap value41,42, while the electron g-factor rises to a value of about 1

(being −0.44 in GaAs) already for a nitrogen concentration of 0.1%40.

Another striking property of dilute nitrides is the effect that hydrogen has on them33. Indeed, H
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atoms form stable N-2H and N-2H-H complexes33,43–45 that wipe out the effects of nitrogen, thus

gradually restoring the band gap46–48, effective mass49, spin properties40, refractive index50, lattice

constant45,46,51, and ordering52 of the N-free materials. By introducing hydrogen in a controlled

manner, all these properties can be finely tuned; moreover, by allowing H incorporation only in

selected regions of the sample, it is possible to achieve a spatially tailored modulation of the band

gap energy53, as well as of the lattice constant54, in the growth plane. In particular, depositing

H-opaque masks on the surface of a GaAs/GaAsN/GaAs quantum well before H irradiation allows

for the realization of site-controlled nanostructures with arbitrary shape and size, like QDs31,55 or

wires56. This technique allowed also to achieve the weak-coupling regime in a QD-PhC cavity

system32,57. In Table 1 the main characteristics of this fabrication technique are reported. While

this post-growth method for the fabrication of site-controlled nanostructures presents significant

advantages over the techniques described earlier, even in this case, nanolithography techniques and

etching steps are needed for the nanopatterning of the surface.

In the present work, on the other hand, we exploit the possibility to break N-H bonds by

illuminating the sample with a laser light of proper wavelength58,59. In particular, we are able to

achieve a high spatial control of the hydrogen removal process by focusing the laser light with the

dielectric tip of a Scanning Near-field Optical Microscope (SNOM), which allows us to overcome

the diffraction limit of objective lenses60, thus obtaining site-controlled GaAsN QDs. Before

proceeding any further, it is worth noting here that this fabrication process was performed at room

temperature and in air, without any particular treatment of the sample’s surface.

The sample used in this work is a fully hydrogenated GaAs/GaAsN:H/GaAs quantum well

(QW). In order to test the H removal process in a condition similar to that needed for its realization

in a photonic crystal cavity, the QD fabrication was performed on an array of well-separated circular

areas where the QW is suspended with respect to the substrate, as shown in Figure 1a and 1b. The

QD fabrication was performed by exposing for a few seconds a nanometric region of the membrane

surface, ideally the central region, with the 514.5 nm line of a continuous wave (CW) argon laser

by means of a SNOM setup in illumination mode, equipped with a dielectric tip. Exploiting the

optical near field of the tip, we aim to remove hydrogen58,59 from the GaAsN:H layer of the QW in

an area smaller than the typical spot size (about 500 nm) obtained at this wavelength with a high

NA objective lens. A sketch of the QD fabrication process is reported in Figure 1c. The excitation

power and exposure time are varied to optimize the fabrication process. Details on the sample

preparation and QD characterization techniques are reported in the Experimental Section.
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Figure 1. Sample description and sketch of the QD fabrication technique. (a) Top view by SEM of a

suspended quantum well structure (membrane) within which the QDs are fabricated. The black areas are

the apertures opened in the membrane layer by Reactive Ion Etching to let HF penetrate below the QW and

etch the sacrificial AlGaAs layer away. In the figure, the circular region from which the sacrificial layer has

been removed is visible as a dark-gray area underneath the released membrane. (b) Sketch of the suspended

membrane sample. (c) Illustration of the QD fabrication process: a SNOM tip coupled with a laser beam

generates a near-field hot spot, within which the N-H bonds of the GaAsN:H layer are broken, leaving a

GaAsN QD.

In Figure 2a we have reported the PL spectra of five representative GaAsN QDs fabricated at

different powers, from 1.1 mW to 0.7 mW, and with the same exposure time (1 s). The PL spectrum

of the GaAs/GaAsN/GaAs QW before hydrogenation is also reported for comparison reasons, as

the QW emission energy (about 1.30 eV in our case) represents the lower limit for that of the QD.

Indeed, when hydrogen is removed from an area large enough that the H-induced confinement

effects are negligible, the fabricated QDs approach the QW’s behavior. This situation can be

attained for either high fabrication powers or long exposure times. By keeping the exposure time

fixed while reducing the fabrication power, indeed, the QD diameter is expected to decrease. In

turn, this should result in a larger confinement-induced blueshift, which can be observed rather

clearly in the micro-PL spectra displayed in Figure 2a.
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The behavior described above is summarized in Figure 2b, wherein the average PL emission

energy is plotted versus the fabrication power for two different set of QDs: one fabricated with

1 s exposure time (blue dots) and the other one with 5 s (red squares). Two colored bands are also

plotted as a guide for the eye: they have a width of 20 meV, corresponding to the inhomogeneous

broadening of the emission energy of the QDs. As expected, the QD emission energy decreases,

i.e., the dot size increases, also by increasing the exposure time. As noted above, for high excitation

powers the observed trends both seem to saturate at the value of the QW energy, corresponding

to negligible H-induced confinement effects. When the excitation power tends to zero, on the

other hand, the two datasets tend to rather different asymptotic QD energies, i.e., QD sizes. This

observation seems to suggest a non-trivial dependence on the excitation conditions for the effective

size of the “hot spot” generated by the photons impinging on the sample. This is perhaps not

surprising, given that the size of the hot spot is determined by the combined role of several complex

phenomena, among which photon absorption and heat dissipation, simultaneously taking place

inside the material. While it is beyond the scope of this work to provide an accurate theoretical

modeling of the dependence of the QD size on the excitation conditions, its full characterization

is crucial to maximize our control over this novel nanofabrication technique. Figure 2b provides

a clear example of the importance of the excitation conditions, as the range of energy tunability

attainable for the fabricated QDs nearly doubles –going from 70 meV to 130 meV– as the exposure

time is decreased from 5 s to 1 s.

In Figure 2c we reported the PL intensity map of the 1.315 eV emission peak of a QD fabricated

with a laser power of 1.1 mW for 1 s (spectrum in Figure 2a), superimposed to a SEM image of

the same area. The alignment was done analyzing the intensity of the background signal coming

from the substrate. Indeed, due to the different refractive index contrast between released and

non-released areas, this signal is greatly reduced in the released areas, thus allowing us to clearly

define the extension of the suspended membrane. The emission in Figure 2c comes from the center

of the membrane and its spatial FWHM is about 1 µm, which is equal to the spatial resolution of

the setup, as expected.

We have also used the SNOM setup to measure the sample topography, thus testing the surface

of the membrane for possible morphological modifications after QD fabrication. For 1 s exposure

time, as long as the fabrication power is less than 1.2 mW, no damage of the surface is observed, as

shown in the topographic map of Figure 2d. When the power is 1.2 mW or more, on the other hand,

a little dip is created in the exposed region, as shown in the topography of Figure 2e, and in the
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Figure 2. (a) PL spectra at 10 K of five GaAsN QDs fabricated at different powers, distinguished by colors,

and with the same exposure time (1 s) superimposed to the PL spectrum of the GaAs/GaAsN/GaAs QW

before hydrogenation (gray areas). The fabrication powers, in unit of mW, are provided as labels. (b) PL

emission energy at 10 K of several GaAsN QDs as a function of the fabrication power. Blue dots and red

squares represent 1 s and 5 s exposure time, respectively. The colored bands are a guide for the eye. (c) PL

intensity map at 10 K of the emission peak at 1.315 eV of one of the GaAsN QDs shown in (a), fabricated at

1.1 mW for 1 s. The emission has a round shape and a spatial FWHM of 1 µm, equals to the setup resolution.

(d) Topography map of the membrane surface after the fabrication of a QD (fabrication power of 1.1 mW).

Using 1.1 mW or less, no damage of the surface is observed. (e) Topography map of the membrane surface

after the fabrication of a QD with a fabrication power of 1.2 mW for 1 s. Using 1.2 mW or more, a clear

damage of the surface is observed. (f) Depth profile of the membrane pit shown in (e).
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relative depth profile of Figure 2f. The measured depth of the dip is about 10 nm, while its FWHM

is about 100 nm. This dip represents an upper limit for the possible dimensions of the fabricated

QDs, which are actually expected to be much less than 100 nm, at least for the fabrication powers

giving rise to sizable confinement effects.

Using the emission energies in Figure 1b we can estimate the size of our QDs (see Supporting

Information for details). We assume that they have a cylindrical shape, with a radius R, deter-

mined by the QD fabrication parameters, and thickness L = 6 nm, the same of the original QW,

since it is reasonable to assume that hydrogen is fully removed from the entire thickness of the

GaAs/GaAsN/GaAs QW. We obtain 2R = 4.8, 5.0, 6.1, 9.2, 13 nm for the QDs created with 0.7,

0.8, 0.9, 1.0 and 1.1 mW fabrication power (1 s time exposure), respectively. The error on 2R is

about ±15%. This proves that with the SNOM tip we have removed hydrogen from an area much

smaller than the diffraction limit.

These dimensions are surprisingly smaller than the beam size. Indeed, as we stated previously,

the beam size of the tip in the GaAsN:H layer is expected to be about 200 nm. In order to form

a QD, the removed hydrogen should, in principle, diffuse out of the central region and this can

take place only if a temperature gradient is present. This feature can explain why we can obtain

smaller QDs with respect to the width of the fabrication beam: while the wavelength and excitation

power determine the amount of broken N-H bonds, the temperature gradient and the exposure time

determine the H diffusion and therefore the diameter of the QD. This conclusion is supported by the

fact that, at low temperature (10 K) or in the case of a non-patterned sample, the excitation power

must be increased to obtain QDs similar to those fabricated at room temperature and/or on the

suspended membranes. Even though no measurement of the QD position distribution with respect

to the center of the tip is available, we can reasonably think that the QD is formed under the center

of the tip, in a spot which can be pessimistically considered as half of the end diameter of the tip,

giving, in our case, about 50 nm61,62. This number gives the ultimate limit of the spatial precision

of our fabrication technique, since other effects like tip positioning and tip quality can increase

this limit. As previously stated, this limit is similar to that established for other site-controlled QD

fabrication techniques (see Table 1), and it satisfies the requirements for the controlled integration

of a QD with photonic crystal cavities.

From the data reported in Figure 2b, an emission inhomogeneous broadening of about 20 meV

can be inferred for the QDs fabricated with a 1 s exposure time. The two guides for the eyes in

Figure 2b have this width. It is worth noting that the lower limit of the inhomogeneous broadening
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of the QDs fabricated with this technique is roughly given by the broadening of the starting QW,

which is mainly due to roughness at the GaAsN/GaAs interfaces and to nitrogen random fluctuations

in GaAsN. Since in the present case, the inhomogeneous broadening of our QDs is similar or even

smaller than the QW broadening, we can only conclude that the spectral reproducibility of our QD

fabrication technique gives rise to a broadening much smaller than 20 meV. As discussed above

(see Table 1), other site-controlled QD fabrication techniques show larger QD inhomogeneous

broadenings, except for the technique based on inverted pyramids. Even though the spectral accuracy

of our technique does not satisfy the requirements for a controllable integration of QDs in PhC

cavities, we have to mention that it does not give rise to any appreciable additional broadening with

respect to the QW broadening. This means that we could reach much smaller QD inhomogeneous

broadening simply by employing higher-quality QWs.

In some cases, our QDs show several peaks (see, e.g., Figure 3a), which can be identified by

studying their PL emission intensities as a function of the excitation power. Figure3a shows three

PL spectra of the same QD acquired for different excitation powers. All the displayed spectra are

characterized by the presence of two peaks, with a clearly different dependence of the PL intensity

on the excitation power, as summarized in Figure 3b. According to a Poissonian model for the

level occupation probability63, the exciton (X) and bi-exciton (XX) PL line intensities, IPL, follow

different filling dynamics, as described by the expression

IPL = C(αP β)n exp(αP β) , (1)

where n = 1 for X and n = 2 for XX, P is the excitation power, and C, α, and β are three

constants. The term αP β corresponds to the average number of excitons present in the QD, 〈n〉,

for a given excitation power. Fitting the experimental data with Equation (1), we obtain that the

peak at 1.325 eV can be attributed to the X recombination, while the peak at 1.315 eV to the XX

recombination. The fitting parameters result to be α = (1.01± 0.14) µW−β and β = (1.14± 0.06)

for the QD under consideration. The line broadening and the relative spectral position confirm

our attribution. It is known that the most important contribution to the spectral broadening are the

electric field fluctuations generated by charged defects around the QD. The relative position of the

charged defects results in a different quantum confined Stark shift amplitude for each excitonic

complex. It turns out that X is nearly always broader than XX64, as we also found in our case.

Moreover, XXs have usually a negative binding energy65, therefore their luminescence should be

observed at lower energies with respect to the exciton, as also observed in our case.
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Figure 3. Analysis of the PL (T = 10K) as a function of the excitation power for a GaAsN QD fabricated at

1.1 mW with an exposure time of 1 s. (a) Three PL spectra of the QD, acquired at different excitation powers.

Two peaks are present, characterized by a different power dependence. At 190 nW, the FWHMs of the two

emissions at 1.325 eV (X) and 1.315 eV (XX) are 300 µeV and 900 µeV, respectively. (b) Intensity versus

excitation power for the two peaks shown in (a). The continuous lines are fits of the data with Equation (1),

which allow us to identify the two peaks with the exciton (X, 1.325 eV) and biexciton (XX, 1.315 eV)

emissions. This identification is consistent with the relative values of the FWHMs.

As a last remark, the X line reported in Figure 3b shows a saturation power of about Psat ≈

1.1 µW. The saturation power of X (i.e., the value of P for the maximum occupation probability)

allows us to estimate the capture volume V of the QD63. Since at saturation the average number of

excitons in a QD is 1, 〈n〉 = 1, we can write V Gτ = 〈n〉 = 1, where G is the e-h pair generation

term and τ ≈ 1 ns is the lifetime of the e-h pairs. Considering the GaAs absorption coefficient66 at

532 nm, α = 7× 104 cm−1, and an average generation term given by G = αPsat/(AEph), where

A = 1 µm2 is the spot area and Eph the 532 nm photon energy, we can estimate a capture volume

of about 4.9 × 104 nm3. Assuming a cylindrical geometry of the QD with an height h = 6 nm

(the entire height of the QW) and radius R ≈ 11 nm as calculated above, we can estimate the

capture length (Lc) of the QD, considered constant all around the nanostructure. We obtain about

Lc = 17 nm, much larger than the QD size, indicating the fairly good quality of the material.

We have then measured the normalized second order autocorrelation function, g(2)(τ), to test

the single-photon emitter nature of the realized QDs. In Figure 4a we have reported the spectrum of

the QD of Figure 3, fabricated at 1.1 mW with 1 s exposure time (red line), which shows X and XX
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emission lines. In Figure 4b the g(2)(τ) measured on the XX emission line of this QD is shown.

Analogously, in Figure 4a we have reported the spectra of two additional QDs: one fabricated with

a power of 1.0 mW and a 1 s exposure time while for the other we employed at 7 mW for 1 s, using

a different optical fiber. In Figure 4c and 4d the g(2)(τ) of their observed X emission lines are

reported.

All the g(2)(τ) in Figure 4 were fitted with curves (reported as solid black lines) based on the

solutions of a system of rate equations, developed by taking into account the main processes leading

to the capture, relaxation, and recombination of carriers in and out of the QD (for a full description

of the model, see Ref. 57). For the QDs reported in Figure 4b and 4c the fit yields a carrier capture

time, τcap, of 0.27 ns and 0.14 ns, respectively, while the exciton recombination time is τrad ∼ 1 ns

for both QDs. The black curve reported in Figure 4c is actually not a fit, as we fixed τrad = 1 ns and

τcap = 0.2 ns, while also including a classically correlated background that accounts for 50% of the

coincidences (a strong background is clearly visible in the PL spectrum shown in Figure 4a; the g(2)

of the sole QD is displayed in Figure 4d as an orange line, renormalized to the maximum of the

lateral peaks).

The obtained values of the g(2)(τ) at zero delay (τ = 0) for the emissions reported in Figure 4b-d

are 0.25, 0.06, and 0.10, respectively. These values, lower than 0.5, prove that our emitters are

single photon sources. The g(2)(0) does not show a zero value because, in order to shorten the

time measurement, the power was increased, leading to a larger probability of the QD ground state

re-population from higher energy levels and to spurious emission from the substrate.

It is worth noting the large FWHM (≈ 2meV) of the QD indicated with label (d) in Figure 4a.

Throughout our experiments, we systematically found that smaller QD dimensions corresponded

to larger spectral broadening and to lower QD efficiencies. For the smaller QDs, i.e., for low

fabrication powers, the low efficiency prevented us from measuring the g(2)(τ) without resorting

to prohibitively long acquisition times. Both the low efficiency and the larger line broadening

are consistent with an increased effect of the environment (e.g., non-radiative defects, fluctuating

charges) on the properties of smaller QDs. On the one hand, this might point to an increased

role of the surface (in our case, of the QW interfaces, where defects and extra charges are known

to concentrate) as the QD size decreases. On the other hand, it is not surprising to observe this

behavior in shallower, less confined QDs, characterized by significantly more delocalized exciton

wavefunctions.

In conclusion, we have demonstrated the possibility to fabricate site-controlled QDs exploiting
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Figure 4. (a) PL spectra at 10 K of three GaAsN QDs emitting at different energies, distinguished by colors,

superimposed to the PL spectrum of the GaAs/GaAsN/GaAs QW before hydrogenation (gray area). The

labels X and XX indicate the exciton and bi-exciton emissions, respectively. The labels (b), (c), and (d)

indicate in which panel is reported the corresponding normalized second order autocorrelation function,

g(2)(τ). The value of g(2)(0) < 0.5 is a proof of the single photon emitter nature of the GaAsN QDs

fabricated with our technique. The dot (b) was fabricated with 1.1 mW for 1 s, the dot (c) with 7 mW for 1 s

using a different optical fiber and the dot (d) with 1.0 mW for 1 s. Solid black lines in (b), (c), (d) represent

the fit of the g(2)(τ) with a QD microstate model explained in the text and detailed in Ref. 57. Since the

fit in (d) was obtained considering also a classical correlated background, the contribution of the sole QD

(renormalized to the maximum of the adjacent peaks) is reported as a solid orange line.

the optical near field of a tapered dielectric fiber (SNOM tip) and the effects of hydrogen on the

properties of GaAsN. This fabrication technique showed a spatial accuracy of the order of 50 nm

and an inhomogeneous broadening of about 20 meV. While the spatial accuracy is sufficient for the

deterministic integration of a site-controlled QD with a PhC cavity, the inhomogeneous broadening

obtained for our QDs is too large. However such broadening is due entirely to the linewidth of the

GaAsN QW we employed, suggesting a negligible broadening due to our fabrication technique.

Some QDs have shown the presence of both biexciton and exciton emissions, an important feature
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for the possible employment of these QDs as sources of entangled photon pairs4.

It is worth noting that the QD fabrication was performed in air, at room temperature, and without

any particular lithography or etching procedure. Further, this fabrication technique has several

other advantages: 1. absence of a wetting layer4; 2. possibility to cover both telecommunication

wavelength windows by tuning the nitrogen concentration and/or introducing indium in GaAsN33;

3. very broad range of applications, since in principle this technique can be used to directly write,

not only QDs, but any complex planar nanostructure, such as quantum wires, quantum rings, or

QD molecules/chains; 4. rewritability of the sample. A hydrogen irradiation can “erase” the

nanostructure, making the sample ready for another nanostructure writing; 5. possibility to tune,

not only the band gap, but also the refractive index of the material, thus allowing for the realization

of rewritable waveguides50. In conclusion, this novel fabrication technique paves the way to the

easy integration of QDs in arbitrary photonic structures with a controllable top-down approach.

EXPERIMENTAL SECTION

Sample preparation. We prepared a fully hydrogenated GaAs/GaAsN/GaAs quantum well

(QW), grown by Molecular Beam Epitaxy with the following structure: a GaAs buffer (130 nm)

is deposited on a (001) GaAs substrate, followed by an Al0.7Ga0.3As sacrificial layer (1500 nm),

a GaAs lower cladding (130 nm), a GaAs0.989N0.011 layer (6 nm), and a GaAs upper cladding

(30 nm).67 The sample was then moved to a vacuum chamber, where it was kept at a constant

temperature of 190 ◦C and exposed to a flux of hydrogen ions generated by a low energy Kaufman

source (beam energy 100 eV, beam size about 3 cm) with an ion current density of 25 µA/cm2 for

about 500 s. The total dose of H was 8 × 1016 ions/cm2, sufficient for a complete passivation of

the nitrogen atoms. An excess of hydrogen has the only effect to favor the formation of N-2H-H

complexes with respect to the N-2H ones, thus introducing a slightly compressive strain in the

sample33,45.

Membrane preparation. The sacrificial layer between the QW and the substrate was removed

to obtain an array of well-separated circular suspended membranes with a diameter of few µm32.

First, an array of circular apertures of 4 µm in diameter is patterned by Electron Beam Lithography

(Vistec EPBG 5HR working at 100 kV) into a positive-tone resist (ZEP 520 A) spun on the sample’s

surface and developed in a mixture of MIBK:IPA (1:1). Then, the circular apertures are transfered

into the sample, down to the AlGaAs layer, by means of a chlorine-based Reactive Ion Etching
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(with a Cl2:BCl3:Ar gas mixture). Finally, the residual masking resist is removed with anisole, and

the GaAs membranes are released by a wet etching in HF (5%) of the AlGaAs sacrificial layer.

QD fabrication. The QD fabrication was performed by exposing for a few seconds a nanometric

region of the membrane surface, ideally the central region, with the 514.5 nm line of a continuous

wave (CW) argon laser (Spectra-Physics BeamLok 2060) by means of a SNOM setup (Omicron

TwinSNOM) in illumination mode, equipped with a dielectric tip. The laser shutter has a temporal

reproducibility of about 10%. The tip is a chemically etched, uncoated near-field fiber probe,

realized on a single mode optical fiber designed for operating at 633 nm61,62. The electromagnetic

field at the exit of the tip is expected to maintain the cylindrical symmetry of the fiber. In order to

guarantee this behavior, we have carefully selected the tips according to their far field projection

on a target, selecting only the probes with a symmetrical far field distribution. The tip is mounted

on a piezoelectric bimorph cantilever, controlled by feedback electronics to keep the tip at no

more than 10 nm above the surface of the sample, which, in turn, is mounted on a three-axes

piezo translation stage. The feedback signal can be recorded during the scanning of the sample

surface, allowing to obtain, simultaneously with the optical map, also the topography of the scanned

region, with a lateral spatial resolution below 50 nm. The tip was positioned on the center of each

membrane at first by manual positioning, observing the sample surface with a microscope, and

then it was repositioned after a topographic map of the surface. The width of the beam increases

with the distance from the tip; in particular, considering the refractive index of our sample (3.5),

the employed wavelength, and the characteristics of the fiber, the width of the beam in the layer

of interest is expected to have a Gaussian shape with a FWHM of about (200± 50) nm, while the

beam intensity can be considered constant along the vertical extension (6 nm) of the GaAsN:H

layer68.

PL characterization. The optical properties of the fabricated nanostructures were studied

by micro-photoluminescence (micro-PL). The sample was kept at 10 K in a low-vibration Janis

ST-500 continuous He-flow cryostat which in turn was mounted on a Physik Instrumente x-y

translation stage for scanning the sample surface. The luminescence was collected by a home-made

confocal microscope setup equipped with a infinity corrected Mitutoyo 100x objective (378-806-3,

NA = 0.7). The luminescence was spectrally dispersed and detected using an Acton SP2300i

spectrograph mounting a 600 gr/mm grating, blazed at 1000 nm, and a Si CCD Acton Pixis 100F.

The spatial resolution of the system is about 700 nm, while the spectral resolution is about 400 µeV.

For time-integrated measurements the excitation source was a CW diode-pumped solid-state laser
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at 532 nm (CNI MLL-III-532). Time-resolved PL (TR-PL) measurements were performed using

the time correlated single photon counting (TCSPC) technique. The excitation source was provided

by a mode-locked Ti:Sapphire tunable laser (Spectra Physics Tsunami, 700-900 nm spectral range,

200 fs pulse duration, 12.2 ns pulse period) frequency doubled by a BBO crystal and pumped

by a frequency doubled CW Nd-YAG laser. The spectrally dispersed luminescence was selected

using the exit slit of the spectrograph and sent to a PerkinElmer SPCM-AQR-16 single photon

counting APD. For second-order autocorrelation (g(2)(τ)) measurements, a Hanbury Brown and

Twiss intensity interferometer was used. The luminescence was split by a 50:50 non-polarizing

beam splitter and each beam was dispersed by an Acton SP2300i spectrograph. A PerkinElmer

SPCM-AQR-16 single photon counting APD was present at the exit slit of each spectrograph.

Both for the TR-PL and g(2)(τ) measurements the APD signals were processed with proper fast

electronics (Tennelec TAC, Canberra MCA) interfaced with a computer.
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