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MAGNETIC NANOPARTICLE HYPERTHERMIA
ENHANCED BY A ROTATING FIELD

Gabriele Barrera,∗ Paolo Allia, and Paola Tiberto
INRiM, Advanced Materials Metrology and Life Sciences, Torino, Italy

(Dated: February 13, 2025)

The heating efficiency of magnetite nanoparticles for therapeutic hyperthermia is shown to be
substantially enhanced by applying a uniformly rotating magnetic field in place of a field directed
along an axis, when all other factors are held constant. Optimization of the heating efficiency is
actively pursued in order to keep the volume fraction of nanoparticles as low as possible, reducing the
adverse effects emerging from nanoparticle accumulation in organs. The effect of a rotating magnetic
field is calculated by solving rate equations for the magnetic moments of magnetite nanoparticles
with predominant Néel’s relaxation and pictured as double-well systems. The model results in a
simple expression for the power density generated by nanoparticles with random easy axis directions.
A thermal model of a tissue simulant is used to show that applying a rotating instead of a linear
field permits to more than halve the dose of nanoparticles needed to attain the target temperature
in the tissue.

I. INTRODUCTION

Magnetic nanoparticle hyperthermia has revealed to
be a most promising, challenging technique of precision
medicine aimed to the cure of tumors [1–6]. The unique
blend of physico-chemical properties and of the physi-
ological demands of tumor therapy has made this field
of research complex to dominate as well as intriguing to
investigate [7]; in fact, in recent years a great effort has
been conducted towards a comprehensive, multi-faceted
vision of the problem.

Magnetic particle hyperthermia has originally at-
tracted immediate attention because it does not involve
the use of ionizing radiation or dangerous substances;
moreover, it is based on rather simple physical principles,
at least in principle [8–10]. Advances in fundamental
knowledge have helped to clarify many initially obscure
points resulting in concurrent advances in therapy.
Nowadays, it is known that oversimplified models of
the magnetic response of nanoparticles (which is at the
very basis of their efficacy as point-like heat sources)
should be definitely discarded in favour of a more refined
description of the high-frequency magnetic behaviour
[9, 11–13], and that in-vivo treatments require an
in-deep knowledge of the thermal effects produced by
nanoparticles in the tissue where they are placed [14, 15].

Although important issues about the fundamental
magnetic properties of nanoparticles and their physical
interaction with a living tissue can be considered as ba-
sically solved, a number of equally urgent requirements
about the optimization of their heating performance as
well as their interaction with one patient’s body and
metabolism are still under discussion. Optimization of
the specific loss power (SLP) of magnetic nanoparticles
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has been recently pursued at the level of general ar-
chitecture of the therapy (e.g., by defining appropriate
treatment plans [16]) as well as at the one of fundamental
properties such as nanoparticle shape, size and assembly
[4, 17, 18]. Open issues preventing the diffusion of
magnetic hyperthermia as a therapeutic tool include the
difficulty of depositing an adequate dose (i.e., volume
concentration) of particles at the tumor by targeted
vehiculation in a fluid environment, as well as the weak
heating performance of magnetic fluids available on the
market, which contain a wide distribution of nanopar-
ticle sizes [19]. The main aim of any recent activity
in this field is of course to get the maximum heating
efficiency using the lowest possible amount of nanopar-
ticles in order to reduce potentially harmful side effects
[19–21].The need of keeping the volume concentration as
low as possible is clearly related to the adverse effects
emerging from nanoparticle accumulation in organs and
the problems posed by clearance [22, 23], which are
both remarkably dependent on nanoparticle size also [24].

In principle, the SLP could be optimized either
acting on the properties of the particles, or acting
on the ac driving field. The second strategy has the
obvious advantage of making use of the nanoparticle
materials already approved for medical use by the U.S.
Food and Drug Administration (FDA) and European
Medicines Agency (EMA) [25]. However, a high heating
efficiency of nanoparticles cannot be obtained by simply
increasing frequency and amplitude of the driving field
because of the emergence of well-known detrimental
effects when large magnetic fields of sufficiently high
frequency are applied to healthy tissues [26, 27]. Such
physiological constraints greatly reduce the degrees of
freedom available to the user; however, the performance
of magnetic nanoparticles can still be optimized, and a
significant reduction in their volume concentration can
still be achieved, by acting on specific features of the
magnetic field used to drive the nanoparticle magneti-
zation at high frequency. The particle SLP has been
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shown to be improved by using combinations of ac+dc
magnetic fields [28]. From a different standpoint, the
beneficial effects of using trapezoidal or square ac field
waveforms instead of the sinusoidal ones have been theo-
retically clarified [29, 30] and experimentally verified [31].

As a matter of fact, in virtually all the existing
or envisaged applications of magnetic nanoparticle
hyperthermia, the driving field is directed along an axis
(this is of course a rather easy configuration to deal
with, because it is naturally generated by a single linear
magnetizing coil). However, a magnetic field applied
along an axis is not the best solution in the presence of
magnetic nanoparticles evenly distributed in space, as
is the case of nanoparticles placed at the desired target
inside a living body.

In this work it is proven that the heating efficiency
is markedly enhanced by exciting the nanoparticles by
means of a uniformly rotating magnetic field instead of
a harmonic field directed along an axis. Use is made of
the Néel’s magnetic relaxation scheme, appropriate to
treat nanoparticles already immobilized in the malignant
tissue [32, 33]. In this framework, the magnetic response
is dominated by energy-barrier crossing of magnetic
moments on nanoparticles [9].

In recent years magnetic particle hyperthermia re-
sulting by the application of a uniformly rotating field
of high frequency has been theoretically [34–36] and
experimentally [37–40] studied; however, these works
are focused on the power dissipated by a magnetic
fluid, where the nanoparticle magnetization is either
dominated by the Brown’s relaxation [36] or it involves
the concurrent effects of the Brown’s and the Néel’s
mechanisms [37, 38, 40], depending on particle size. The
Brown’s relaxation is expected to be negligible not only
when the nanoparticles are immobilized, but also in
magnetic fluids at the experimentally explored frequen-
cies (≥ 100 kHz) [39, 41]. However, in the theoretical
approaches involving Néel’s relaxation in fluids a detailed
treatment of the kinetics of magnetic-moment redistri-
bution is lacking. Moreover, the magnetic response of
nanoparticles submitted to the uniformly rotating field
is typically treated in the linear approximation (i.e.,
by focusing on the behaviour of the dynamic magnetic
susceptibility), which can be inadequate to picture the
behaviour of nanoparticles driven by the magnetic field
amplitudes exploited in the therapeutic practice [9].

Studying the heating efficiency of randomly dispersed
magnetic nanoparticles whose magnetic response is dom-
inated by Néel’s relaxation in a living tissue needs a com-
plex formalism and the concurrent use of magnetic and
thermal models. To this aim, a thermal model referring
to a specific living-body simulant and a detailed magnetic
model based on the rate-equation treatment of energy-
barrier crossing of magnetic moments are introduced and

discussed in the following Sections.

II. THERMAL MODEL OF A LIVING-TISSUE
SIMULANT

The power density released by magnetic nanoparticles
plays a central role in equations used to picture the
bioheat transfer in a living body. Such equations model -
up to different levels of refinement - the inherently com-
plicated process of local heating of a malignant tissue by
magnetic nanoparticle hyperthermia. They include the
pioneering Pennes’ equation [42] and other increasingly
complex approaches such as the Chen-Holmes’ and
the Weinbaum-Jiji-Lemons’ equations [43]. In all such
treatments the magnetic power density keeps the very
same functional form and is considered to be the only
important local source of heat (smaller effects related to
metabolism being often neglected [43]).

In this work, whose aim is to clarify the effects of
an unconventional excitation of magnetic nanoparticles
rather than to picture bioheat transfer in a specific
malignant tissue, a simplified heating model of human
tissue is adopted, consisting of an artificial simulant (a
phantom) shaped in the form of a sphere of radius b =
1 cm and containing a volume fraction fV of evenly
distributed magnetite nanoparticles. The phantom is
entirely surrounded by a nanoparticle-free medium; the
convective boundary conditions at the interface (r = b)
are related to the tissue-blood perfusion rate. It is
assumed that pure Néel’s magnetic relaxation is the
dominant source of heat generation, in line with the
notion that magnetic nanoparticles are physically con-
strained by the host tissue, so that particle translation
and/or rotation are suppressed [8, 44].

In this case, and with the considered radial symme-
try of the phantom, it is easy to show that the Pennes’
equation basically reduces to the standard radial Fourier
equation with uniform thermal conductivity k and ther-
mal diffusivity αT :

∂2T

∂r2
+

2

r

∂T

∂r
+

Pin

k
=

1

αT

∂T

∂t
(1)

where T is the increment of temperature above the
starting temperature (assumed to be T0 = 310 K),
and the k, αT parameters take values appropriate to
typical tissue simulants, k = 0.5 Wm−1K−1 and αT =
1.4 ×10−7 m2s−1 [9]. The input power density Pin is
proportional to the volume concentration fV of nanopar-
ticles in the phantom (0 ≤ fV ≤ 1). As pointed out
elsewhere [9] the power density is affected by magnetic
parameters of nanoparticles such as the saturation
magnetization and the effective anisotropy constant.
Both quantities are temperature-dependent, so that in
principle the term Pin in Equation 1 implicitly depends
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on temperature, making the Fourier equation impossible
to solve analytically. However, for limited temperature
intervals (not exceeding 10-15 degrees), as is typically
the case for in-vivo hyperthermia, the input power den-
sity can be considered constant to a good approximation.

The quantity Pin turns out to be remarkably affected
by the type of high-frequency excitation of magnetic
nanoparticles (e.g., by the shape of the driving field wave-
form [29, 30]). In the following section, the effect of a
uniformly rotating instead of linear magnetic field is dis-
cussed in the framework of Néel’s nanoparticle relaxation.

III. MODELLING THE RESPONSE OF
MAGNETIC NANOPARTICLES

We consider monodisperse, single-core nanoparticles of
pure, stoichiometric magnetite (Fe3O4) with diameters
D in the 9-16 nm range and basically non-interacting.
Such an assumption is justified by the low concentration
of magnetic particles usually exploited in clinical appli-
cations of magnetic hyperthermia (of the order of one
percent in volume or less [45]) and by the widespread
presence of functionalized surfaces, both making the
mean interparticle distance sufficiently large to signifi-
cantly reduce dipolar coupling. The nanoparticles are
characterized by a dominant uniaxial anisotropy charac-
terized by an effective constant Keff which can include
the effect of weak dipolar interactions as well [46], with
random distribution of the easy axes in three dimensions.

In the main body of the work, particle magnetization
and magnetic anisotropy are assumed to take values
independent of particle size (Ms = 350 emu/cm3 and
Keff = 3 × 105 erg/cm3, deemed to be representative
of actual single-core magnetite particles around room
temperature [47]). This simplifying assumption is
justified by experimental evidence indicating that the
effect of particle size on the intrinsic magnetic properties
is reduced in the considered range of D values [48, 49].
Moreover, a small or even insignificant effect of size on
both Ms and Keff has been observed in Fe3O4 nanopar-
ticles characterized by a particularly high crystal quality
and stoichiometry as well as by a well-defined shape
[49–52].
On the other hand, a significant role of nanoparticle
surface on both Ms and Keff has been found in a
number of measurements [48, 53–55], although partic-
ularly important effects were mainly observed in very
small particles [53, 56]. It has been suggested [49] that
size-dependent magnetic properties are more frequently
observed in structurally or compositionally defective
nanoparticles, as confirmed by simulations indicating
that intrinsic surface effects in ideal Fe3O4 particles are
relevant only for sizes below about 5 nm. Nevertheless,
in order to expand our predictions to cases when size
effects appear to play a non-negligible role on the

magnetic properties, the present analysis is extended in
the Appendix to magnetite nanoparticles characterized
by an explicit size dependence of both Ms and Keff

based on experimental evidence [48, 49].

The direction of the easy axis is defined by the angles
(α, ϕ), as shown in Figure 1. The magnetic field lies in
the (x, y) plane where it uniformly rotates counterclock-
wise, and is generated by two orthogonal harmonic fields,
respectively applied along the x and to the y axis, hav-
ing the same frequency f = 100 kHz and time-dependent
amplitudes H1(t) and H2(t):

H1(t) = HV cos(ωt)

H2(t) = HV sin(ωt)
(2)

where ω = 2πf is the angular velocity of the rotating
field vector H. The maximum amplitude of both fields is
equal to HV = 100 Oe, a value typical of hyperthermia
applications [9, 45].

The magnetic response of the system by effect of the
rotating field is determined by solving magnetic rate
equations applied to the magnetite nanoparticles pic-
tured as two-level systems (DWS). Features, advantages
and limits of the rate-equation model were discussed
in detail elsewhere [29, 57]; a concise summary of the
method may be found in the Supplemental Material [58].

Although our final aim is to study the general case
of nanoparticles characterized by a random distribution
of easy axes in space, which closely fits the actual ar-
rangement of easy axes of non-interacting nanoparticles
dispersed in living tissues, it can be useful to start with a
study of a planar distribution of easy axes. In this case,
the easy axes are considered to lie in the (x, y) plane
where the rotating field acts (i.e., α = π/2); they are
uniformly distributed around the z axis with the ϕ angle
taking all values between 0 and 2π. Studying the in-
plane distribution of easy axes allows one to find out the
released power density in a simple configuration; the re-
sults will be helpful in approaching the three-dimensional
case.

A. In-plane distribution of easy axes

The magnetization of the nanoparticles is determined
by thermally activated energy-barrier crossing in the
presence of a cyclic magnetic field [46]. In order to get
the magnetization in the rate-equation framework, the
first step is to find the values and the angular positions
of the two potential-energy minima for the magnetic mo-
ment and of the maximum between them (see Figure 2,
where the main features of the DWS model are sketched).
These values are found by searching for the stationary

points with respect to θ
(

∂E
∂θ = 0

)
of the magnetic en-

ergy :
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FIG. 1. Relation between spherical coordinate angles α, ϕ and
rectangular x, y, z axes. The magnetic field rotates uniformly
counterclockwise in the (x, y) plane.

E(θ, ϕ, t) = KeffV sin2(ϕ− θ)−
−MSV H1(t) cos θ −MSV H2(t) sin θ

(3)

where V = π
3D

3 is the nanoparticle volume. For
any angle ϕ0, the shape of the E(θ, ϕ0, t) curve cycli-
cally evolves with time (the curve drawn as an exam-
ple in the left-hand panel of Figure 2 actually corre-
sponds to ϕ0 = π/6 when t = 0). Once the values
Em1, Em2, EM , θ1, θ2 have been determined for each time,
the quantities τ1, τ2 involved in the rate equations (see
the Supplemental Material [58]) are easily obtained as:

τ1(t) = τ0 exp
(EM − Em1

kBT

)
τ2(t) = τ0 exp

(EM − Em2

kBT

) (4)

where τ0 ≈ 1× 10−9s, kB is the Boltzmann’s constant
and T = 300 K. A significant quantity related to the τi’s
is the effective relaxation time τeff :

τeff =
τ1τ2

τ1 + τ2
(5)

which plays a role similar to the Néel’s relaxation time
τN [32].
Let us now consider the subset of Nϕ nanoparti-

cles characterized by the same ϕ angle. The quanti-
ties τ−1

1 , τ−1
2 are the jump frequencies for energy-barrier

crossing of the magnetic moment from well 1 to well 2
(and viceversa) and account for the combined effect of
temperature and of the ac magnetic field [46]. The time-
dependent occupancy parameters nϕ1 = Nϕ1/Nϕ, nϕ2 =
Nϕ2/Nϕ, which measure the degree of filling of each
potential-energy well, are found by solving the rate equa-
tions [59]. Using the actual values of nϕ1 and nϕ2 and ex-
ploiting the standard procedure outlined elsewhere [57],
it is possible to get the projections of the magnetiza-
tion vector along the directions of the orthogonal fields
Mϕ,1(t) and Mϕ,2(t). The magnitude Mrot(ϕ, t) and
phase β(ϕ, t) of the rotating Mϕ vector are immediately
found:

Mrot(ϕ, t) =
[
M2

ϕ,1 +M2
ϕ,2

]1/2
β(ϕ, t) = arctan

(Mϕ,2

Mϕ,1

) (6)

The quantity β(ϕ, t) is the angle swept by the rotating
magnetization of the considered subset of nanoparticles
(in contrast, the angle swept by the rotating magnetic
field is simply βH = ωt). The quantity:

δ(ϕ, t) =
[
β(ϕ, t)− βH(t)

]
=

[
β(ϕ, t)− ωt

]
(7)

is the phase angle between the rotating magnetiza-
tion of the considered subset and the field. Finally, the
magnitude and the phase lag of the entire planar sys-
tem of nanoparticles are obtained by integrating the ϕ-
dependent quantities on the entire range of ϕ values:

Mrot =
1

2π

∫ 2π

0

Mrot(ϕ, t)dϕ ≡ 1

π

∫ π

0

Mrot(ϕ, t)dϕ

δ =
1

2π

∫ 2π

0

δ(ϕ, t)dϕ ≡ 1

π

∫ π

0

δ(ϕ, t)dϕ

(8)

The equivalence between integrals in both equations
stems from the uniaxial (rather than unidirectional) sym-
metry of magnetic anisotropy. Performing the averages
over ϕ cancels out the time dependence of both the inte-
grand functions in Equation 8. The results are displayed
on a polar graph in panel a) of Figure 3, where the instan-
taneous arrangement of the H, Mrot vectors is shown for
some values of the nanoparticle diameter when the time
t is equal to an integer number of periods of the driv-
ing field. In this case, the vector H is directed along 0°
and the constant magnitude at all angles is rendered by
the dotted circumference in black. The dashed circumfer-
ences in colour refer to the magnitude of the Mrot vector
and indicate that Mrot, as obtained from Equation 8, is
the same for all angles swept by the vector; however, it
can be noted that such a quantity is strongly dependent
on particle size. The Mrot vector is in general delayed
by a finite phase angle δ with respect to H. Such a delay
can be either almost insignificant, as for particles with
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FIG. 2. Typical parameters of the DWS model for magnetite particles whose easy axis lies in the (x, y) plane. In this example,
the easy axis makes an angle ϕ0 = π/6 with the x−axis.

D = 11-12 nm, or quite substantial, as for the ones with
D = 13-14 nm.

It is concluded that the Mrot vector rotates in the
(x, y) plane with the same angular velocity ω of the
rotating field, with constant (size-dependent) magnitude,
and with constant (size-dependent) lag with respect to
H.

The behaviour of Mrot with D is shown in panel b).
For small D values, Mrot increases with the particle
diameter because under the same HV the magnetic
response is stronger in nanoparticles with a higher mag-
netic moment MsV (i.e., their magnetic susceptibility
increases as D3). However, such a trend is effectively
contrasted and finally dominated by a strong reduction
of the magnetic response of the system because of the
increase of the barrier between potential energy wells,
which hinders the redistribution of the population
between the two wells [46], finally leading to a very low
asymptotic value of Mrot.

As expected, the phase lag δ is intrinsically related
to the Néel relaxation of nanoparticles. The behaviour
of δ with the effective relaxation time τeff (Equation
5) is reported in panel c) where the diameters of
nanoparticles associated to the τeff values are also
shown. The maximum of δ is coincident with the period
of the rotating field T = 1/f : this corresponds to the
condition of maximum interference of the thermally
activated redistribution of the populations between the
two potential energy minima with the one induced by
the rotating field [46]. When τeff << T , the thermally
activated redistribution is so fast that the system is
always at equilibrium and the resulting magnetization
stays in phase with the field. On the other hand, when

τeff >> T , there is almost no activated redistribution of
the populations of the two wells and the magnetization is
only related to the cyclic change of the tilt angles θ1, θ2
by effect of the rotation of H. Such an effect, which
does not involve any energy-barrier crossing, is almost
instantaneous, so that again the phase lag disappears.

B. Power density released by a 2D distribution of
easy axes

The cyclic variation of the magnetic contribution to the
internal energy ∆Um over one full period of the magnetic
field (i.e., one full rotation of the vector H in the (x, y)
plane) is (in Gaussian units [60]):

∆Um =
1

4π

∮
H · dB ≡

∮
H · dM (9)

the integral
∮
H ·dH being identically zero because dH

is always ⊥ H in this case. On the basis of the results
obtained in Section IIIA, the time behaviour of H and
M is:

H(t) = HV

[
cos(ωt)ux + sin(ωt)uy

]
M(t) ≡ Mrot(t) =

= Mrot

[
cos(ωt− δ)ux + sin(ωt− δ)uy

] (10)

where ux,uy are unit vectors along the (x,y) axes,Mrot

is a constant and δ (a positive constant) is the time lag
between M and H (Equations 7 and 8). Using
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FIG. 3. a) polar graph of the rotating field and of the resulting magnetization for different nanoparticle sizes (see text); b)
magnitude of the rotating magnetization vector Mrot as a function of nanoparticle diameter D; c) phase lag between rotating
magnetization and field as a function of the effective relaxation time τeff of the DWS model. In-plane distribution of easy
axes.

dM(t) = ωMrot

[
− sin(ωt− δ)ux + cos(ωt− δ)uy

]
dt

and transforming the closed integral of Equation 9 into
an integral over one full period T , one easily gets:

∆Um = HV Mrot ω×

×
∫ T

0

[
− sin(ωt− δ) cos(ωt) + cos(ωt− δ) sin(ωt)

]
dt =

= 2πHV Mrot sin δ

Such an increase of the magnetic contribution to the
total internal energy of the system of nanoparticles must
be exactly counterbalanced by an energy transfer from

the nanoparticles to the host tissue in the form of heat.
The intrinsic heating power density of nanoparticles with
easy axes distributed on the (x, y) plane is therefore:

P(2D) = 2πfHV Mrot sin δ = ωHV Mrot sin δ (11)

where f is the common frequency of the harmonic
orthogonal fields. Therefore, the released power is de-
pendent on both Mrot and δ; the overall behaviour of
the intrinsic power is shown in Figure 4 as a function
of nanoparticle diameter for the in-plane distribution of
easy axes and for size-independent magnetic properties
(full squares and full line). The curve turns out to be
almost symmetrical around its maximum and is deter-
mined by the interplay between the behaviour of Mrot

and δ with D, as shown in Figure 3.
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FIG. 4. Behaviour with diameter D of the intrinsic power
density P(2D) generated by magnetite nanoparticles with
easy axes in the (x, y) plane. Full squares/full line: size-
independent magnetic properties of particles; open cir-
cles/dotted line: size-dependent properties (case a) of the
Appendix); open triangles/dashed line: size-dependent prop-
erties (case b) of the Appendix).

FIG. 5. Parallel (H//) and perpendicular (H⊥) field com-
ponents acting on particles whose easy axis makes a generic
angle α with the z−axis.

C. Three-dimensional distribution of easy axes

In general, the easy axes of an assembly of nanoparti-
cles embedded in a living tissue or a phantom are ran-
domly directed along all directions in space, i.e., they are
characterized by α and ϕ angles taking all values between
0 and π and between 0 and 2π, respectively. The mag-
netic response of nanoparticles is expected to be strongly

influenced by α.

For example, the subset of nanoparticles with α =
0 has the easy axis always perpendicular to the rotat-
ing field. In such a case, there is no redistribution of
the population of the considered subset between the two
wells (see note [59]) and the magnetization vector is sim-
ply tilted from the z−axis towards the instantaneous
direction of the field in the (x, y) plane by the angle

θ̃ = arcsin (MSHv/2Keff ). Therefore, the magnetiza-
tion always lies in the plane determined by the z−axis
and the instantaneous direction of H. In other words,
the magnetization of these nanoparticles precedes with
angular velocity ω around the z−axis describing a cone
of aperture 2θ̃ with no phase lag with respect to the field;
therefore, these nanoparticles do not contribute to the
generation of heat.

Let us now consider the nanoparticles characterized by
a fixed, arbitrary value of α and all values of ϕ. For such
a configuration it is possible to introduce a plane Π//

defined by the easy axis and the x−axis and a plane Π⊥
which intersects Π// at right angles (see Figure 5). The
H vector rotates in the (x, y) plane which forms the angle
(π/2 − α) with Π//; the projections on the Π// and Π⊥
planes of the circumference swept by the tip of the field
vector are ellipses.

It should be recognized that the component of the mag-
netization produced by the H⊥ component (see Figure 5)
does not lag the magnetic field (by the reasons outlined in
note [59]]); only the component of the magnetization pro-
duced by H// can have a phase lag with respect to the
field by effect of the population redistribution between
the two wells. As a consequence, when the aim is to find
out the magnetic power dissipated by nanoparticles as
heat - which only appears when the magnetization lags
the field - the magnetization component related to the
evolution of H⊥ can be neglected. The magnetization
arising from the evolution of H// is instead first calcu-
lated for each ϕ, then averaged over all ϕ’s and finally
projected on the (x, y) plane.

As a result, for each value of α the only component of
the magnetization which plays an active role in increasing
the magnetic internal energy ∆Um (and hence the gen-
eration of heat) is a vector Mrot(α) which rotates in the
(x, y) plane with angular velocity ω, as in the 2D case;
the vector can be expressed in terms of the scalar quanti-
ties Mrot(α), δ(α) obtained as in Section IIIA (Equation
8). These are reported in Figure 6 for all α values be-
tween 0 and π/2 (it is enough to show such an interval
because Mrot(π/2 + α) = Mrot(π/2 − α) by symmetry
reasons; the same condition applies to δ(α)).

For all nanoparticle diameters, amplitude and phase
lag of the rotating magnetization monotonically decrease
when α decreases from π/2 to 0; for D ≥ 15 nm the
variation of Mrot with α is small but nonzero, as put in
evidence by the horizontal black dashed line. It can be
checked that for α = π/2 the values of the 2D case are
retrieved, while the phase lag δ(α) → 0 for α → 0 for all
diameters, as indeed expected.
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It should be stressed that the in-plane vector Mrot(α)
does not correspond to the whole magnetization of the
system; however, all neglected magnetization compo-
nents are either perpendicular to the H vector or ex-
actly in phase with it, therefore not contributing to the
increase of ∆Um. Therefore, the contribution of nanopar-
ticles whose easy axis makes the angle α with respect to
the z-axis has the same structure discussed in Section
IIIA but for the presence of an α−dependent magnitude
and an α−dependent phase lag.

D. Power density released by a 3D distribution of
easy axes

For each value of α, the intrinsic power density related
to the lag between Mrot(α) and H is calculated following
the same procedure outlined in Section III B for the case
α = π/2. Therefore:

P(2D)(α) = 2πfHV Mrot(α) sin δ(α). (12)

The intrinsic power density arising from all the
nanoparticles is obtained by integration:

P(3D) =
1

2

∫ π

0

P(2D)(α) sin(α)dα

= πfHV

∫ π

0

Mrot(α) sin(δ(α)) sin(α)dα

(13)

It may be interesting to compare the intrinsic power
density produced by nanoparticles of different size in a
narrow interval around any value of α; to this aim, the
quantity P(2D)(α) sin(α) has been plotted in Figure 7
in false colours on spherical polar graphs for D values
ranging from 12 to 15 nm. These graphs are useful to
single out the easy-axis directions corresponding to the
maximum efficiency of nanoparticles as sources of heat;
the results are obviously invariant under rotation around
the z−axis. The colour scale in Figure 7 is the same
for all diameters and has been generated by normalizing
the values taken by the quantity P(2D)(α) sin(α) to
its maximum value, observed to occur for α = π/2 in
nanoparticles with D = 13 nm. These polar graphs
indicate that the heating performance of single-core mag-
netite nanoparticles is strongly dependent of their size
and that their efficiency is highest when the easy axes
are parallel to the plane where the magnetic field rotates.

The behaviour of P(3D) as a function of nanoparticle
diameter for HV = 100 Oe, f = 100 kHz and size-
independent magnetic properties is shown in panel a) of
Figure 8 (full black line and full symbols). The power
density associated to the 3D distribution of easy axes
keeps many of the features of the curve obtained for the
in-plane distribution of easy axes (Figure 4); this is not
unexpected considering the procedure used to treat the

3D case. The function P(3D)(D) is again strongly peaked
around the nanoparticle size for which τeff = 1/f .

The advantage of replacing a linear harmonic field
with a rotating field of same amplitude and frequency is
shown in the same panel. The intrinsic power density
of nanoparticles submitted to a driving field directed
along an axis (red line and symbols) has been calculated
by simply turning off the field H2(t). In this case, the
behaviour of P(3D)(D) turns out to be similar to the one
arising from for the rotating field, but for the intensity
of the maximum, which is definitely lower. The reason
why magnetic nanoparticles are more efficient when
they are excited by a rotating field is clarified in panel
b), where P(2D)(α) sin(α) is plotted as a function of α
in the two cases for the same nanoparticles (D = 13
nm). Under a rotating field, the largest contribution to
the overall power density comes from particles whose
easy axis lies in, or makes a small angle with, the (x, y)
plane (α ≈ π/2); on the contrary, such a contribution
is almost suppressed when the driving field is applied
along the x−axis, which breaks the rotational symmetry
around z typical of the rotating-field case.

E. Effect of vertex field and driving frequency

The results discussed in the previous Section were
obtained for a vertex field of 100 Oe and a frequency
of 100 kHz, representing the values usually dealt with
in clinical applications of magnetic hyperthermia [45].
It may be useful to show the effect of changing these
user-controlled quantities around the representative val-
ues. To this aim, one nanoparticle diameter was selected
(D = 13.5 nm, corresponding to the maximum of the
P(3D) curve in panel a) of Figure 8 (full squares/full
line).
The effect of vertex field on the intrinsic power density
released by a 3D distribution of easy axes was investi-
gated in the interval 0 ≤ HV ≤ 300 Oe at f = 100 kHz.
The results are reported in the left panel of Figure 9.
The function P(3D)(HV ) follows a H2

V law only for
HV ⪅ 125 Oe and displays a broad maximum around
200 Oe. Such a behavior is explained in terms of
competing contributions to the power density: with
reference to Equations 12 and 13, it can be noted that
the effect of increasing HV (and consequently Mrot) is
counterbalanced by a significant reduction of the lag
δ(α). The latter effect is explained taking into account
that a driving field of larger magnitude is more able to
pull the magnetization away from the easy direction,
resulting in a lesser time lag between H(t) and Mrot(t).
Therefore, for a given frequency the power released by
the nanoparticles to the environment can be optimized
by selecting the right amplitude of the rotating field.
It should be noted that the H2

V dependence of power
density observed in Figure 9 at small field amplitudes is
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FIG. 6. a) behaviour of the magnitude Mrot of the in-plane magnetization vector as a function of angle α; b) the same for the
phase lag δ.

FIG. 7. Spherical polar graphs in false colours of the α−dependent intrinsic power density P(2D)(α) sin(α), for some nanoparticle
diameters. The colour scale is the same in all graphs and represents values from 0 to 1 obtained normalizing the plotted quantity
to the maximum value (corresponding to α = π/2 for D = 13 nm.)
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FIG. 8. a) intrinsic power density P(3D) of magnetite nanoparticles of different size with easy axes randomly distributed in space
and submitted to a rotating field with HV = 100 Oe (black lines and symbols); the same quantity obtained using a field of same
frequency and amplitude directed along the x−axis (red lines and symbols); full squares/full line: size-independent magnetic
properties of particles; open circles/dotted lines: size-dependent properties (case a) of the Appendix); open triangles/dashed
lines: size-dependent properties (case b) of the Appendix); b) behaviour of the α−dependent power density for nanoparticles
submitted to the rotating and to the linear field (full/dashed lines).

also predicted by the linear response theory for nanopar-
ticles dispersed in a magnetic fluid [28, 35, 37, 39]. The
intrinsic power density released by the nanoparticles
under a linear driving field of same frequency is also
shown. Using a rotating field is a more favorable option
up to about 250 Oe; for higher field amplitudes, a
crossover of the P(3D)(HV ) curves is observed, mainly
owing to the fact that the effects of the reduction of
the lag between H(t) and Mrot(t) are not present when
the excitation is provided by a linear field. However,
for the driving-field amplitudes most commonly used in
magnetic hyperthermia (HV < 250 Oe [14]) the rotating
field ensures a better release of heating power by the
nanoparticles. It should be recalled that in preclinical
and clinical treatments at fixed frequency the driving
field amplitude is to be kept as low as possible in order
to meet the requirement of biological safety [14].

The effect of frequency on P(3D) was investigated in
the interval 50 kHz ≤ f ≤ 250 kHz for HV = 100 Oe,
as shown in the right panel of Figure 9. As expected,
increasing the frequency results in larger values of P(3D);
however, the slope of the curve progressively decreases.
This behavior is again explained in terms of competing
effects on the power density; with reference to Equations
12 and 13, the enhancement of P(3D)(α) arising from the
contributions of both f and δ(α) is attenuated by the

decrease of Mrot, which is in turn related to the increas-
ingly larger difficulty of the DWS to follow an increas-
ingly fast rotating field. Such a behaviour differs from
the f2 dependence predicted by the linear response the-
ory applied to nanoparticles in magnetic fluids [39], where
the magnetization processes do not involve an activated-
barrier crossing. The intrinsic power density released by
the nanoparticles under a linear driving field of same
amplitude is also shown; the rotating field is definitely
the preferred solution in the whole interval of investi-
gated frequencies, the advantage becoming increasingly
pronounced with increasing the frequency of the driving
field.

IV. APPLICATION TO MAGNETIC
HYPERTHERMIA

The input power density Pin in Equation 1 is simply
obtained by multiplying the intrinsic power density P(3D)

(Equation 13) by the volume fraction fV of nanoparticles
dispersed in the phantom:

Pin = P(3D) fV . (14)

This input power density (released power per unit vol-
ume of the tissue) is of course directly proportional to the
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FIG. 9. Left panel: intrinsic power density P(3D) released by nanoparticles with D =13.5 nm driven by a rotating and a linear
driving field of frequency f = 100 kHz as a function of the vertex field HV (black/red line and symbols); the dependence on the
square of the field amplitude is shown for comparison (dashed blue lines); right panel: intrinsic power density P(3D) released
by the same nanoparticles as a function of frequency by effect of a rotating field (black line and symbols) and a linear field (red
line and symbols) of same amplitude (HV = 100 Oe).

SLP (released power per unit mass of magnetic nanoma-
terial). When Pin is independent of temperature, Equa-
tion 1 is immediately solved in steady-state conditions.
The final temperature increment above T0 in the phan-
tom of radius b is characterized by a parabolic profile:

T (r,∞) =
Pin

6k
(b2 − r2) +

Pin b

3h

where h is the convective heat transfer coefficient,
which takes values of the order of 5× 104 Wm−3K−1 in
malignant tissues [9]. The maximum temperature incre-
ment is found in r = 0 and is Tmax = Pinb

2/6k+Pinb/3h;
the temperature increment at the outer surface of the
phantom is Tb = Pinb/3h. The average steady-state tem-
perature increment within the phantom turns out to be
directly proportional to the input power density:

Tave(∞) =
[ b

9k
+

1

3h

]
b Pin ≈ 4.2× 10−5 P(3D) fV . (15)

Here, the proportional constant is derived from the
values of the parameters of the thermal model.

The volume concentration of nanoparticles needed to
attain a given average temperature increment in the
phantom (in this case, Tave = 10 °C) is easily obtained
from Equation 15 and is shown in Figure 10. Applying
a uniformly rotating field reduces the local nanoparticle

concentration needed to obtain the desired result, quite
independently of nanoparticle size. In fact, driving mag-
netic nanoparticles by a uniformly rotating magnetic field
allows to increase the heating efficiency with respect to a
field applied along the x−axis by a factor whose average
value in the considered set of nanoparticle diameters is
about 2.5. As a consequence, the volume concentration
of particles needed to achieve the same target temper-
ature under the same field’s frequency and amplitude is
reduced on the average by the same factor, i.e., it is more
than halved.

V. CONCLUSION

Enhancement of the heating efficiency of magnetite
nanoparticles is an issue that is still a matter of concern
in antitumor therapies based on magnetic-particle hyper-
thermia. The SLP of magnetic particles can be increased
by acting on the particles themselves (e.g., by using
advanced chemical methods to suitably modify their
size, shape or degree of aggregation) or by optimizing
the field needed to drive their magnetization at high
frequency, without the need of modifying properties
and features of magnetite nanoparticles obtained by
standard preparation methods and/or available on the
market and approved for medical use.

In magnetic-particle hyperthermia the magnetite
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FIG. 10. Favorable effect of the rotating field on the dose of
magnetite nanoparticles needed to increase the temperature
of a target by 10 °C, for different particle sizes.

nanoparticles are usually submitted to a harmonic field
which is directed along a given axis; however, we have
shown that such a configuration is not the best one in
the case of nanoparticles distributed over a volume, and
that changing the geometry of the applied magnetic
field from linear to circular - all other parameters being
constant - permits to more than double the heating
efficiency of magnetic nanoparticles for hyperthermia.
As a direct consequence, applying a uniformly rotating
field reduces by a factor larger than two the dose needed
to attain a given target temperature in the malignant
tissue. This result does not depend on the behavior with
size of the intrinsic magnetic properties of nanoparticles.
This can be a significant improvement because of the
expected reduction of the adverse side effects related to
nanoparticle biodistribution and clearance. From the
standpoint of clinical safety, it should be reminded that
a rotating field can be viewed as the superposition of two
mutually orthogonal linear fields of same frequency with
a 90◦ phase shift. As a consequence, possibly harmful
effects on healthy tissues are expected to roughly double
in comparison to the linear field case. For f = 100
kHz and HV = 100 Oe, the detrimental effects of the
rotating-field technique are still within the accepted
safety limits.

Such a result has been obtained for nanoparticles
characterized by the Néel’s relaxation mechanism.
This is a realistic assumption when the nanoparticles,
submitted to driving-field frequencies typical of actual
hyperthermia therapy, have reached their positions

in the target tissue where they are assumed to be
physically constrained; however, this problem is difficult
to treat owing to the intrinsic nonlinearity of the relation
between the characteristic energies of the DWS and
the relaxation times for the redistribution of magnetic
moments in the two wells. The proposed magnetic
model permits to solve the problem in a satisfactory
way, and results in a remarkably simple, revealing
expression for the input power density Pin, which is
directly proportional to the SLP.

VI. APPENDIX

The surface properties of magnetic nanoparticles are
often observed to reduce the magnetization and to en-
hance the effective anisotropy [48, 53–55]. The effect -
which is reduced or even disappears in almost ideal par-
ticles specially designed for proof-of-concept experiments
[49, 50, 52] - is usually accounted for by the following sim-
ple expressions [53, 56]:

Ms(D) = M (bulk)
s

(
1− 2t/D

)3
Keff (D) = KV +

6Ks

D

(16)

where M
(bulk)
s is the magnetization of bulk magnetite

(92 emu/g = 478 emu/cm3), t is the thickness of the mag-
netically dead layer at the nanoparticle surface [53, 61],
KV is the bulk value of magnetic anisotropy and Ks is
surface anisotropy [49, 53, 56].
In the following, it is assumed that t is of the order of 1
nm for all considered nanoparticle diameters while the
KV , Ks parameters are taken from measurements on
magnetite particles whose size corresponds to the range
of values considered here (D ≥ 9 nm). In particular, the
following two sets of values are used: a) KV = 1.68×105

erg/cm3, Ks = 0.010 erg/cm2 and b) KV = 2.40 × 105

erg/cm3, Ks = 0.029 erg/cm2. The first set is derived
from the measurements by Nayek et al [48], whilst the
second one is given by Battle et al. [49] and applies to
high-quality particles. It is worth noting that the con-
stant value of Keff used in this paper is halfway from
the mean values in the 9 - 16 nm interval calculated for
case a), Keff = 2.19 × 105 erg/cm3, and for case b),

Keff = 3.84 × 105 erg/cm3. The mean value of Ms is

Ms = 332 emu/cm3, close to the one used in this paper,
Ms = 350 emu/cm3. This indicates that the constant
values considered in this work are appropriate.
The values of P(2D) obtained in both cases are reported
in Figure 4. The main properties of the curve obtained
using constant magnetic parameters are retrieved; in par-
ticular, a sharp maximum of the intrinsic power density
on the (x, y) plane is always observed. The maximum
of the P(2D)(D) curve is displaced towards right in case
a) (open circles/dotted line) and towards left in case b)
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(open triangles/dashed line) with respect to the value
calculated using size-independent magnetic properties; a
minor effect on the full width at half maximum of the
curves is also observed. A remarkable result is the en-
hancement of the maximum of P(2D) in case a), and the
corresponding reduction in case (b), with respect to the
value obtained in Section III B. Both the shift of the
curves and the behavior of the maximum are consistent
with the fact that in cases a) and b) the mean valuesKeff

are respectively higher and lower than Keff = 3 × 105

erg/cm3.
The effect of the size-dependent magnetic properties on

the P(2D)(D) curve is mirrored in the behavior of the
power density P(3D) of nanoparticles with easy axes ran-
domly distributed in space, as shown in Figure 8 for both
a) and b) cases (open circles/dotted line and open trian-
gles/dashed line, respectively). The variation of Ms and
Keff with size results in effects closely similar to the
two-dimensional case. Even when the intrinsic magnetic
properties are size-dependent, the power density gener-
ated by nanoparticles under a rotatng field overcomes by
more than a factor of two the same quantity produced by
a field of same frequency and amplitude directed along
the x−axis.
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Uraga, J. A. Garcia, F. Plazaola, and I. Garćıa-Alonso,
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