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Sensitivity bounds of a spatial Bloch-oscillations Atom Interferometer

I. Na lȩcz1, L. Masi2, G. Ferioli2, T. Petrucciani2, M. Fattori2 and J. Chwedeńczuk1

1Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL–02–093 Warszawa, Poland
2LENS and Dipartimento di Fisica e Astronomia,

Universitá di Firenze, 50019 Sesto Fiorentino, Italy

We study the ultimate bounds on the sensitivity of a Bloch-oscillation atom interferometer where
the external force is estimated from the measurement of the on-site atomic density. For external
forces such that the energy difference between lattice sites is smaller than the tunneling energy, the
atomic wave-function spreads over many lattice sites, increasing the separation between the occupied
modes of the lattice and naturally enhancing the sensitivity of the interferometer. To investigate
the applicability of this scheme we estimate the effect of uncontrolled fluctuations of the tunneling
energy and the finite resolution of the atom detection. Our analysis shows that a horizontal lattice
combined with a weak external force allow for high sensitivities. Therefore, this setup is a promising
solution for compact devices or for measurements with high spatial resolution.

I. INTRODUCTION

Atom interferometry is a powerful tool for sensing of
gravity, inertial forces and electro-magnetic fields [1–4],
or measuring the fundamental constants [5, 6] and test-
ing the foundations of physics [7–9]. Free-falling atom
interferometers offer the highest sensitivity and are the
core technology in many experiments aiming at accurate
gravimetry [10], gradiometry [11–13], measurements of
rotations [14], inertial navigation [15] gravitational wave
detection[16], general relativity tests [17, 18] and geodesy
from space missions [19, 20]. However their sensitivity
scales with the size of the interrogation area and this lim-
its their use in application where high spatial resolution is
required. Trapped atom interferometers are a valuable al-
ternative [21]. Different schemes have been implemented
including Bloch oscillations [22], double well traps [23–
25] and Wannier Stark atom interferometers [26, 27].

Although arbitrarily long interrogation times can lead
to high sensitivity, these schemes have so far suffered from
some limitations, like decoherence induced by interac-
tions [28], trapping potential imperfections [29] and lim-
ited separations between the spatial modes of the inter-
ferometer [21]. Solutions to this last problem have been
addressed in several proposals and investigated in many
current experiments. All these methods require combi-
nations of optical lattices [30, 31], harmonic traps [32]
or in general dynamically varying trapping potentials
with high quality and stability [33]. It is desirable to
develop a scheme where a single optical lattice is used,
since it reduces the experimental requirements on a trap-
ping potential and because the high control of the lattice
frequency naturally increases the accuracy of the mea-
surements. Bloch-oscillations atom interferometry, where
the periodic oscillations of the momentum distribution
of the atoms is observed, fulfill such requirement since
only a lattice, plus the external force to be measured,
is needed to operate the sensor [34]. As demonstrated
in a recent paper [35], the sensitivity depends only on
the initial coherence length ξ of the source. However
its scaling with the initial temperature T of the gas (i.e.

ξ = h/
√

2πmkBT where m is the mass of a single atom,
kB is the Boltzman constant and h is the Planck con-
stant), make unrealistic any significant improvement of
Bloch-oscillation interferometry beyond the state of the
art.

Triggered by recent works [36, 37], where two groups
have reported the observation of the spatial evolution
of the gas in-trap, we investigate the ultimate bounds
on the sensitivity of a spatial Bloch-oscillation interfer-
ometer (SBOI) where we detect the on-site atomic den-
sity rather than the atomic momentum distribution. In
the case of horizontal lattice operation, for weak external
forces, i.e., such that the energy difference between lat-
tice sites is smaller than the tunneling energy, the atomic
wave-function spreads over many lattice sites, naturally
increasing the separations between the occupied modes
of the lattice. Our analysis shows that this evolution,
together with the capability to address single sites, leads
to high sensitivities, making the scheme we propose a
promising solution for compact devices or for detection
of weak forces with high spatial resolution.

The paper is organized as follows. In Section II we
present the main results of this work. In particular in
Section II A we introduce the Hamiltonian and character-
ize the evolution of the system. In Section II B we derive
the ultimate bound of the sensitivity (Section II B 1) and
compare it to an estimation protocol based on the count-
ing of atoms in each site of the lattice (Section II B 2)
or on the measurement of the width of the atomic cloud
(Section II B 3). In Section II B 4 we study how the sen-
sitivity depends on the initial distribution of atoms in
the lattice and on the tunneling energy between the sites
(Section II B 5). In Section II C we investigate the most
favorable experimental configuration (Section II C 1), the
effect of a fluctuating tunneling energy (Section II C 2)
and of a non-ideal atom counting (Section II C 3), the
dependence of the sensitivity on the lattice spacing (Sec-
tion II C 4) and a configuration of optimal performance
(Section II C 5). Finally we summarize our findings and
conclude our analysis in Section III. Some details of cal-
culations, omitted for clarity in the text, are presented
in the Appendix.
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II. MODEL AND SENSITIVITY

A. Hamiltonian

Our starting point is the Hamiltonian of an ultra-cold
Bose gas of N atoms in a one-dimensional optical lattice
in presence of an external force mg

Ĥ =

∫
Ψ̂†(x)

[
− ~2

2m
∆ + Vlat(x) +mgx

]
Ψ̂(x) dx, (1)

where Vlat(x) is the optical lattice potential, g is the ac-
celeration and ~ = h/2π is the reduced Planck constant.
In the tight-binding approximation, we represent the field
operator as a series of operators annihilating an atom in
the k-th site

Ψ̂(x) =
∑
k

wk(x)âk, (2)

where wk(x) is the Wannier-like spatial wave-function
localized in the k-th well. Here and below we consider
the infinite lattice, hence the sum runs from −∞ to +∞.
Upon the substitution of Eq. (2) into Eq. (1) we obtain,
up to the leading order of the overlap of the Wannier
functions

Ĥ = −J
∑
k

[
â†kâk+1 + âkâ

†
k+1

]
+ δ

∑
k

kâ†kâk. (3)

The two coefficients J and δ correspond to the hopping
energy and the energy difference between neighboring
sites, respectively, and are equal to

J =

∫
w∗k(x)

[
− ~2

2m
∆ + Vlat(x)

]
wk+1(x) dx, (4a)

δ = mg

∫ [
|wk(x)|2 − |wk+1(x)|2

]
x dx ' mgx0, (4b)

where x0 is distance between the adjacent wells. This
Hamiltonian (3) sets the dynamics of the Bloch oscilla-
tions of the gas, which we assume to be a pure Bose-
Einstein condensate (BEC). The initial state reads

|~α(0)〉 =
1√
N !

[
~α(0)~̂a†

]N
|0〉, (5)

where ~α(0) is a vector of complex amplitudes (|αk(0)|2

sets an initial density of atoms at site k) and ~̂a† is
a corresponding vector of creation operators. Further-
more, |0〉 denotes the vacuum state. The solution of the
Schrödinger equation

i~∂t|~α(t)〉 = Ĥ|~α(t)〉 (6)

takes a particularly simple form

αk(t) =
∑
j

Ukj(t)αj(0), (7)

since the Hamiltonian in Eq. (3) is quadratic. Here Ukj(t)
is the matrix element of the evolution operator

Û(t) = e−i
Ĥt
~ . (8)

We now discuss how the acceleration g can be estimated
from the measurement of the on-site atomic population
rather than releasing the BEC from the lattice as it is
generally done in ultra-cold atom experiments [34].

B. Estimation

In this Section we estimate the theoretical sensitivity
of an SBOI. In II B 1 we exploit the quantum Fisher infor-
mation (QFI) to calculate the ultimate bound, optimiz-
ing over all possible measurements and detection proto-
cols [38]. In II B 2 and II B 3 we estimate the sensitivity
provided by a measurement of the populations in each
site and by the width of the cloud, respectively. Finally,
in II B 5 we discuss the dependence of the sensitivity on
the number of initially populated sites.

1. Ultimate sensitivity

The highest precision an interferometer can achieve is
given by the inverse of the QFI. For pure states, as con-
sidered here, it reads

Fq = 4
(
〈ĥ2〉 − 〈ĥ〉2

)
≡ 4∆2ĥ, (9)

where the average is calculated at time t using the ex-

pression |~α(t)〉 and where ĥ is the generator of the inter-
ferometric transformation set by the evolution operator
introduced in Eq. (8)

ĥ = i
∂Û(t)

∂g
Û†(t). (10)

The calculation of ĥ together with the Cramer-Rao lower
bound [38] gives the formula

∆gopt

g
=

1√
Fq

1

g
. (11)

Using this formula we determine the ultimate sensitiv-
ity. As a first case we consider a BEC of N = 4 × 104

atoms initially localized in one site and take J = δ. The
result, obtained by numerically solving the Schrödinger
equation (6), is drawn with a dotted grey line in Fig. 1 in
the time interval t ∈ [5.5, 7.5]TB , where TB = mgx0/h =
δ/h. Note that the ultimate sensitivity monotonously im-
proves with time. This reflects the growth of information
about g, deposited in the system, and formally it is a con-
sequence of the action of the derivative in Eq. (10) of the
evolution operator (8). We now compare this ultimate
bound with the sensitivity calculated with two different
measurement schemes.
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2. Site-resolved atom number measurement

First we assume to detect, via an in-situ measurement,

n
(j)
k —the number of atoms in each site. Here, k labels

the sites and j indexes the measurements. The outcomes
are averaged over ν repetitions, giving

nk =
1

ν

ν∑
j=1

n
(j)
k . (12)

According to the central limit theorem, if ν is large, the
probability for obtaining nk is Gaussian,

p(nk) =
1√

2π∆2n̂k
e
− (nk−〈n̂k〉)

2

2∆2nk/ν . (13)

Here 〈n̂k〉 and ∆2n̂k are true values (i.e., calculated
asymptotically at ν → ∞) of the on-site atom number
mean and fluctuations, respectively. This set of outcomes
is used to construct the likelihood function

L(g̃) =
∑
k

log (p(nk)) . (14)

The gravitational acceleration, which is to be estimated,
is treated as a free parameter g̃ (it enters through 〈n̂k〉
and ∆2n̂k, while nk’s, deduced from the experiment, de-
pend on the true value of g). The parameter is estimated
as this value of g̃ (denoted by g̃ml) at which the likelihood
function reaches its maximum. It is called the maximum
likelihood estimator, it is unbiased and has a sensitivity

∆2g̃ml =
1

ν

F1 + F2

F 2
1

. (15)

Here the two components of the sensitivity are

F1 =
∑
k

(〈n̂k〉′)2

∆2n̂k
, (16a)

F2 =
∑
k 6=l

〈n̂k〉′

∆2n̂k

〈n̂l〉′

∆2n̂l
σ2
k,l, (16b)

where the prime denotes the derivative over the param-
eter, i.e., 〈n̂k〉′ = ∂

∂g 〈n̂k〉 and σ2
k,l = 〈n̂kn̂l〉 − 〈n̂k〉〈n̂l〉 is

the cross-correlation of the site occupations [39].

The moments of the atom number operator n̂k = â†kâk
that enter Eqs (16) read

〈n̂k〉 = Npk(t), (17a)

∆2n̂k = 〈n̂2
k〉 − 〈n̂k〉2 = Npk(t)

[
1− pk(t)

]
, (17b)

σ2
k,j = −Npk(t)pj(t), (17c)

where probabilities pk(t) = |αk(t)|2 are calculated with
Eq. (7). The scaling of all terms from Eq. (17) linearly
withN gives both F1 and F2 also proportional toN . This
in turn gives the 1√

N
dependence of the sensitivity (15)—

i.e., the shot-noise scaling with the number of atoms.

FIG. 1. Relative sensitivity for N = 4 × 104 atoms initially
loaded in a single lattice site and for J = δ, as a function of
time. Dashed line shows the sensitivity for the measurement
of the number of atoms in each site, see Eq. (15). The solid
black line is the error propagation for the width measurement,
see Eq. (20) with ν = 1. The dotted line is the ultimate
sensitivity calculated using the QFI, see Eq. (9).

The dashed line in Fig. 1 displays the sensitivity calcu-
lated with Eq. (15) using the same conditions and atom
number of II B 1. It is periodic and reaches the opti-
mal bound at the multiples of the Bloch period. This
is the first important difference between an SBOI and a
standard Bloch-oscillation interferometer where the sen-
sitivity is almost constant over the whole Bloch period.

3. Measurement of the width

In this Section we compare the previous result with
another method that consists in the measurement of the
width of the cloud in the lattice. To this end, we intro-
duce a (squared) width operator as

ŵ =
∑
k

n̂k
N
k2, (18)

where k = 0 is a label of the site in which initially the
BEC is loaded. The estimation protocol consists in a
measurement of the mean squared width at M instants
t1, . . . tM . At each moment it is averaged over ν repeti-
tions of the experiment, similarly to Eq. (12). This gives
a series of averaged outcomes

wl =
1

ν

ν∑
j=1

w
(j)
l (l = 1 . . .M). (19)

A theoretical curve—resulting from the averaging of the
operator (18) over the state (7) at time tl—is fitted to
this set of acquired data, with g as a free parameter of
this least-squares-fit method. The value of g obtained
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FIG. 2. Sensitivities as a function of σ (i.e., for different
initial distribution of atoms in the lattice, see Eq. (24)) for
N = 4 × 104, t = 7TB and J = δ. The ultimate bound
(dotted gray), calculated with Eq. (11) is compared with the
estimation from the number of atoms (15)—dashed black—
and with the estimatiom from the mean width (21)—solid
black.

this way is unbiased and gives the sensitivity [40]

∆2gfit =
1

ν

1∑M
l=1

(〈ŵ〉′l)2

∆2ŵl

. (20)

From the point of view of the overall sensitivity, it is
important to investigate each component of this sum,
given by the error propagation formula

∆2gl =
∆2ŵl

(〈ŵ〉′l)2
. (21)

The two moments are equal to

〈ŵ〉l =
∑
k

pk(tl)k
2, (22a)

〈ŵ2〉l =

(∑
k

pk(tl)k
2

)2

+
1

N

∑
k

pk(tl)k
4. (22b)

The mean 〈ŵ〉l is intensive in N (i.e., it does not scale
with the number of atoms). This is also the case of the
first part of 〈ŵ2〉l, which is equal to 〈ŵ〉2l . Therefore,
in the expression for the variance, the dominant terms
cancel and only the term which scales inversely with N
prevails, namely

∆2ŵl =
1

N

∑
k

pk(tl)k
4. (23)

The prefactor 1
N in front of the sum in Eq. (23) gives the

shot-noise scaling of the sensitivity (20), as in the case of
the estimation from the measurement of the number of
atoms in each site (see Section II B 2).

The error propagation formula from Eq. (20) is shown
in Fig. 1 as a function of time with a solid line. Though
it is worse than the sensitivity from the measurement of

the number of atoms (dashed line) it also reaches the ul-
timate bound at the multiples of the Bloch period. Thus
we conclude that both estimation strategies discussed in
this Section can be close-to-optimal if the oscillation time
is close to the Bloch period.

4. Choice of the initial state

So far we used a BEC localized in a single site as initial
state. In this Section we investigate how the sensitivity
changes when the atoms are initially spread over many
lattice sites. For this pourpose we model the vector of
coefficients ~α(0) with a Gaussian funcion

αk(0) ∝ e−
k2

2σ2 , (24)

where the proportionality sign stands for normalization.
We fix t = 7TB and calculate the sensitivity using the
QFI according to Eq. (11) and compare it with the values
predicted by Eqs (15) and (20) as a function of the initial
width of the cloud, σinit. Figure 2 shows the result.

While the ultimate bound can improve as σ increases,
the sensitivities of the two estimation protocols described
in Sections II B 2 and II B 3 deteriorate. This means that
from the point of view of these two strategies, the optimal
operation of an SBOI requires to start with atoms loaded
in a single site of the lattice. The behavior of the ultimate
bound predicted by the QFI derives from the well known
properties of a standard Bloch-oscillations interferometer
where the ultimate sensitivity increases with the initial
coherence length. As we will see in the next Section, an
SBOI can recover high sensitivity operation relaxing the
condition J = δ and using large values of J .

5. Dependence on the lattice parameters

In order to understand how the sensitivity in Eq. (15)
depends on the relevant parameters in the Hamiltonian
(3), i.e., δ and J , an explicit time-dependence of the on-
site probability pk(t) is required. In the limit of a BEC
initially localized in only one site, i.e, pk(0) = δk0, the
time evolution of pk(t) is given by [41]:

pk(t) =

∣∣∣∣∣Jk
((4J

δ

)
sin
( δt

2~
− πn

))∣∣∣∣∣
2

, (25)

where Jk(y) are Bessel functions of the first kind. We
calculate the value of ∆g̃ml at optimum t = TB when
both estimation strategies give the same sensitivity that
saturates the ultimate bound set by the QFI. At this
instant the two components of the sensitivity, F1 and F2,
have the same value equal to (see Appendix A for details)

F1 = F2 = 16N
(J
g

)2( t
~

)2

f(t), (26)
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where f(t) 6 1 and f(t) = 1 for the multiples of the
Bloch period. This sets the bound of the sensitivity of
the estimator g̃ml to the value:

∆g̃ml =
g

2
√

2N

1

J

~
t

=
g

2
√

2N

1

F
(
x0

J
δ

) ~
t
, (27)

where F is the force driving the oscillations. If we com-
pare this expression with the result of the numerical anal-
ysis reported in Fig. (1) for δ/J = 1 at δt/~ = 7 · 2π we
find a perfect agreement.

By comparing this expression with the sensitivity of
a spatial Mach-Zender atom interferometer (SMZI) the
physical mechanism behind the operation of the scheme
presented in this work becomes clear. For two modes
separated by a distance d in presence of an external force
F , the accumulated phase difference φ = Ftd/~ detected

with a shot noise 1/
√
N leads to an uncertainty

∆gmzi =
∆φ

φ
g =

g√
N

1

Fd

~
t
. (28)

Considering that in an SBOI the atoms, initially localized
in one well, at half Bloch period reach a distance equal
to the size of the Wannier Stark states, i.e. ≈ x0J/δ, it
becomes clear—by inspecting Eq. (27) and Eq. (28)—
that the sensitivity of an SBOI is equal to the one of a
SMZI where the separation between the two modes is of
the order of the maximum spatial spread of the atomic
wave-function over the lattice during the dynamics.

Large separation between the spatial modes is crucial
to have a sensitive trapped atom interferometer. This
can be easily fulfilled in an SBOI by simply increasing the
tunneling energy or reducing the strength of the external
force. It is the main result of our analysis.

C. Experimental implementation

1. Horizontal configuration

Bloch-oscillation interferometers typically use a verti-
cal optical lattice to probe the local gravitational force
that corresponds to a δ ' 1kHz×~ for lattice spacings of
a fraction of a micron. In this configuration—using the
maximum value of the tunneling J that is of the order of
the recoil energy ER = (~kL)2/2m ≈ few kHz ×~—J/δ
remains of the order of unity. The wave-function does
not spread over the lattice and thus the present method
cannot offer much gain with respect to the standard de-
tection of the atomic momentum distribution in time of
flight, for vertical lattices.

However, in the δ � J limit, SBOI can be advanta-
geous. To reach this regime, it could be necessary to
align the optical lattice horizontally to cancel the effect
of gravity and to add an external controllable force to
almost compensates the one we wish to measure. This

could limit the maximum relative sensitivity of the mea-
surements due to the finite control of bias forces. How-
ever the use of an optical lattice offers the possibility to
implement a controlled sweep of the phase of the lattice
with an acceleration very close to g. This is a common
technique used in free-falling atom interferometers where
the frequencies of the Bragg or Raman lasers are chirped
to remain in resonance with the atomic sample. In both
cases the moving lattices become a reference frame re-
spect to which the atoms feel a very small residual force.

2. Control of the tunneling energy

Contrary to a Bloch-oscillation interferometer, where
the atomic momentum distribution does not depend on
the tunneling, an SBOI requires the knowledge of J . To
clarify this feature we now describe our scheme from an-
other point of view.

The detection of the intrap atomic density aims at
identifying very precisely the Bloch period TB . As de-
scribed by the analysis in Section II B the highest sen-
sitivity can be achieved very close to a multiple of TB ,
where the atoms, mainly occupying the initial well, tun-
nel to the two neighbours. In this short time interval,
using Eq. (25), we find that N±1 := 〈n̂±1〉 = NJ2(t −
nTB)2/~2. As a consequence measuring N and N±1 at
time t, it is possible to determine how far we are from nTB
only when J is known with high accuracy. Neglecting for
the moment the error due to the quantum fluctuations of
the atom number in the three wells, with a simple error
propagation we find that ∆(t−nTB) = (∆J/J)(t−nTB).
If the time t is known precisely, then by dividing this for-
mula with nTB ≈ t we get

∆(nTB)

nTB
=

∆g

g
=

∆J

J

(t− nTB)

t
. (29)

This expression predicts that the relative uncertainty in
the acceleration is proportional to the relative fluctuation
of J , divided by a factor that increases the closer we per-
form the measurement to a multiple of the Bloch period
nTB . In order to confirm our simplified analysis we have
performed numerical simulations as explained below.

We take into account the changes of J and assume
that it remains constant in each experiment but varies
from shot to shot. This means that a pure state |~α(t)〉 is
replaced by a mixture

%̂ =

∫
dJ P(J) |~α(J)(t)〉〈~α(J)(t)|, (30)

where P(J) is the probability for having J and |~α(J)(t)〉
is a solution of Eq. (6) with fixed J (which appears in
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FIG. 3. Sensitivity from the measurement of the width for a
pure state (solid black line) compared with the noisy case of
σJ = 0.01J0 (dashed dark-grey line) and σJ = 0.05J0 (dash-
dotted light-grey line). Here, J0 = δ. The vertical and hor-
izontal lines indicate the values of the sensitivity at 7.1 TB

used for the comparison with the results provided by Eq. (29)

the Hamiltonian (3)). The two moments read

〈ŵ〉l =

∫
dJ P(J)

∑
k

p
(J)
k (tl)k

2, (31a)

〈ŵ2〉l =

∫
dJ P(J)

(∑
k

p
(J)
k (tl)k

2

)2

, (31b)

+
1

N

∫
dJ P(J)

∑
k

p
(J)
k (tl)k

4. (31c)

Note that due to the fluctuations of J , the dominant,
intensive terms: that from line (31b) and the square of
the mean from line (31a) do not cancel, contrary to the
pure-state case. Therefore, we expect the variance to
significantly grow in presence of noise. To illustrate this
effect, we take a Gaussian probability density

P(J) =
1√

2πσJ
e
− (J−J0)2

2σ2
J (32)

and evaluate the sensitivity using the error propagation
formula from Eq. (20) and the moments of the density
operator from Eq. (31).

Figure 3 shows the sensitivity from the width taken
from Fig. 1 and compares this ideal-case result with the
outcomes obtained in presence of fluctuations of J for
σJ = 0.01J0 and σJ = 0.05J0, where J0 = δ. The an-
ticipated effect is clearly present, though the sensitivity
remains mostly intact by the presence of noise at the
multiple of the Bloch period. We compare the numerical
results at 7.1 TB for the two different levels of noise af-
fecting J reported in Fig. 3 with the prediction provided
by Eq. (29). The good agreement confirms the simpli-
fied description of the interferometric scheme presented
at the beginning of this section.

3. Finite atom number resolution

We now incorporate finite resolution of the atom num-
ber measurement into our model. To this end, we notice
that for a pure BEC, the probability for having nk atoms
in k-th site is binomial

p(nk) =

(
N

nk

)
pnkk (1− pk)N−nk , (33)

where pk = |αk(t)|2 (contrary to before, we skip the
time dependence of pk, for clarity). The imperfection
of the atom-number measurement is represented by a
convolution of p(nk) with the detector resolution func-
tion pres(nk, n

′
k) which is the probability for obtaining

nk given a true value n′k. This gives

p̃(nk) =
∑
n′k

pres(nk, n
′
k)p(n′k). (34)

If we approximate the probability (33) with a normal
distribution with the mean µ and the variance σ equal to

µ = Npk = 〈n̂k〉, σ2 = Npk(1− pk) (35)

we can easily include the finite atom number resolution
σres, taking a Gaussian pres, centered around the true
value and with a width equal to the quadratic sum of σ
and σres and obtain

p̃(nk) ' 1√
2π(σ2

res + σ2)
e
− 1

2

(nk−〈n̂k〉)
2

σ2
res+σ2 . (36)

This implies that while the mean detected atom number
remains unbiased, the mean square increases

〈ˆ̃n2
k〉 =

N∑
nk=0

p̃(nk)n2
k ' 〈n̂2

k〉+ σ2
res. (37)

Also, since in this model of finite resolution, the probabil-
ities pres at different sites k and k′ 6= k are independent,
the average 〈n̂kn̂k′〉 is unaltered.

We now use these results to calculate the impact of
resolution on the sensitivity from Eq. (20). The mean
of ŵ remains unchanged but the variance increases since
according to Eq. (18)

〈ŵ2〉 =
∑
k 6=k′

〈n̂kn̂k′〉
N2

k2k′2 +
∑
k

〈n̂2
k〉

N2
k4. (38)

While the first “off-diagonal” part is intact by the finite
resolution, the second “diagonal” term is modified ac-
cording to Eq. (37).

Fig. 4 shows the impact of this imperfection on the
sensitivity, assuming that at each site, the detector’s res-
olution is proportional to the shot-noise fluctuations of
the mean atom number at this site, i.e., σ2

res = λ〈n̂k〉
(λ is the proportionality constant). The minimal ∆g
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FIG. 4. The effect of finite resolution on the sensitivity from
the measurement of the width. Solid black line is the ideal
case λ = 0, and the dashed black line is for λ = 1.

at t = 7TB increases from the limit set by the QFI
∆g = 4.019 × 10−5g for λ = 0, to 5.684 × 10−5g for
λ = 1, i.e. a factor

√
2. This is expected considering

that for λ = 1 the detection noise is equal to the shot
noise atom number fluctuation for each site.

An approximate analytical formula to quantify the ef-
fect of a finite atom number resolution on the sensitivity
can be again derived at times close to a multiple of the
Bloch period using the formula N±1 = NJ2(t−nTB)2/~2

and the error propagation of ∆N±1. To confirm the va-
lidity of this approach we use it to derive the sensitivity
bound assuming the shot noise scaling ∆N±1 =

√
N±1.

For negligible fluctuations of the tunneling energy we get
∆(t − nTB)/(t − nTB) = ∆N±/(2N±) = 1/(2

√
N±) =

~/[2
√
NJ(t− nTB)]. It follows that

∆(nTB)

nTB
=

∆g

g
=

~
2
√

2NJt
, (39)

where the additional
√

2 takes into account the double
measurement on the two neighboring sites. Note the per-
fect agreement between this formula and Eq. (27) derived
with a rigorous calculation.

Finally, in Fig. 5 we show the combined effect of fluc-
tuations of the tunneling constant and finite resolution
using σJ = 0.01δ and λ = 1. While the sensitivity at
the optimal time does not shfit from the σJ = 0 case
(∆g = 5.684 × 10−5g), the non-zero σJ casuses the re-
gion where the width measurement is close-to-optimal to
shrink with respect to Fig. 4, similarly to the effect ob-
served in Fig. 3.

4. Lattice spacing

In this paragraph we identify the optimal value of the
lattice spacing. For a standard Bloch-oscillation interfer-
ometer the sensitivity does not depend on x0 but can be
enhanced only reducing the initial width of the atomic
momentum distribution. Also for an SBOI the sensitiv-
ity (27) apparently does not depend on x0. However some

FIG. 5. The combined effect of the fluctuations of the tun-
neling constant (σJ = 0.01) and finite resolution (λ = 1) on
the sensitivity from the measurement of the width (dahsed
black). Solid black line is the ideal no-noise case.

experimental constraints change the overall picture. The
use of an optical lattice with x0 equal to a fraction of a
micron makes impossible to load many atoms in a single
lattice site due to high three body losses when atomic
densities are big. This limits the improvement from the
shot-noise scaling, i.e., with the inverse of

√
N .

In addition, if the lattice spacing is too small, it is
challenging to precisely count the atoms in each site. As
a consequence larger lattice spacing naturally improves
the sensitivity of an SBOI. To determine the optimal lat-
tice spacing we notice that the relative uncertainty in an
SBOI is limited by the relative fluctuations of J and the
atomic shot-noise. As a consequence, high sensitivity can
be achieved compensating the external force with an ac-
curate bias field and operating the interferometer with a
very small residual force mg.

However, the sensitivity saturates the optimal bound
(set by the Fq) at multiples of the Bloch period. Con-
sidering that in real experiments the interrogation time
τ is finite, due to decoherence induced by residual in-
teractions or experimental noise, we cannot work with
arbitrarily small forces but keep TB = h/(mgx0) < τ .
This condition suggests to increase x0 while reducing g.
However, an SBOI requires to keep the tunneling J suffi-
ciently high to spread the wave-function over few lattice
sites, i.e., J > δ = mgx0. Using the maximal value of J
as a function of x0, i.e. J = ~2π2/(8mx2

0) we obtain an
upper bound on x0, which sets the minimal applicable
acceleration as a function of the coherence time τ

gmin =
8

τ3/2

√
π~
m

(40)

and the required spacing is x0 =
√
π~τ/m/4.

Finally, we discuss how the lattice spacing influences
the control on the tunneling energy. As indicated in
Eq. (28), the sensitivity depends on the spread of the
wave-function during the dynamics that is equal to
x0J/δ = J/(mg). As a consequence, it is directly re-



8

lated to the spatial resolution of the sensor. If we con-
sider applications where this quantity is determined by
the measurement constraints, fixing g corresponds to fix-
ing J . In the tight binding approximation, the tunneling
energy J in unit of ER depends on the lattice depth sL
through a scaling factor s

3/4
L e−2

√
sL . It is possible to

demonstrate via a simple error propagation that the rel-
ative fluctuation of the tunneling constant, that directly
affects the sensitivity as shown in Sec. II C 2, depends
on the relative fluctuation of the lattice depth ∆sL/sL
by the relation ∆J/J ∼ √sL∆sL/sL. This expression
shows that, the larger the value of sL needed to achieve
a specific value of J , the larger the constant of propor-
tionality. Therefore, bigger x0 reduces the fluctuations
of J provided a specific instability of the lattice depth.
Similar argument is valid also in the limit of small lattice
depths.

5. Final remarks

In this last section we consider a realistic example of an
SBOI. We take τ ∼ 1 s and N ∼ 104, and from Eq. (40)
we get the smallest measurable acceleration ∼ 5× 10−5g
and an optimal lattice spacing of x0 = 17µm. From
Eq. (27), if we neglect fluctuations of the tunneling en-
ergy, the relative uncertainty is 4 · 10−4 and a single shot
(ν = 1) sensitivity is of the order of 10−8g. With an
improvement of a factor of ten in the coherence time,
it is possible to reach a sensitivity comparable with the
state-of-the-art but with an unprecedented spatial res-
olution of the order of 100 µm. Note that in order to
achieve comparable sensitivities with a standard Bloch-
oscillation interferometer, the sensor should be operated
with an ideal BEC with an initial coherence length of
100 µm that is not within the reach of current ultra-cold
atoms technology.

The advantage of the setup discussed in this work with
respect to a standard Bloch-oscillation interferometer is
that the sensitivity depends on the amplitude of the os-
cillations of the cloud in the lattice, rathern than on a
large initial extension of the condensate.

The main obstacles to the operation of an SBOI is the
reduction of the atom interactions [42–44] and the real-
ization of optical lattices with large spacings. Carbon
dioxide gas lasers can be used to generate optical lat-
tices with sites separation of ∼ 5 microns [45]. In the
near future mid-infrared cw high power radiation gen-
erated with quantum cascade lasers might broaden the
spectrum of available spacings. Arbitrarily large separa-
tions between lattice sites could be finally achieved using
recently realized Beat-note optical lattices [46].

III. CONCLUSIONS AND
ACKNOWLEDGEMENTS

In this work, we studied a matter-wave interferometer
consisting of a BEC undergoing Bloch oscillations in an
optical lattice. We assumed that the parameter—here
the acceleration g—is estimated from the in-situ mea-
surement of the atomic density. We considered the case,
when the lattice is oriented almost horizontally, so that
the increment of the linear potential from site to site is
smaller than the tunneling energy. In this regime, atoms
spread over many sites, so the wave-function probes the
perturbing potential over a large distance.

Using the metrological tool known as the quan-
tum Fisher information, we have calculated the best-
achievable sensitivity ∆g for this configuration, and
showed that indeed the precision benefits from the large
extension of the cloud. Having established the ultimate
bound, we have determined the sensitivity for two ex-
perimental scenarios: when g is estimated from the mea-
surement of the number of atoms in each site or from the
width of the atomic cloud. As the latter carries less in-
formation with respect to the former, it gives an inferior
sensitivity, apart from the vicinity of the multiples of the
Bloch period. At these times, all three sensitivities (i.e.,
obtained from the QFI and the two protocols), coincide.

We incorporated two sources of imperfections: fluctua-
tions of the tunneling constant and the limited resolution
of the atom-number measurement. With both these de-
ficiencies, the sensitivity drops but remains competitive
to results obtained with the state-of-the-art settings. We
conculde by stating that the matter-wave interferometer
proposed here turns out to be a promising solution for
compact sensors or for the measurements of small forces
with high spatial resolution.
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Appendix A: Analytic expression of the sensitivity

Here, we present the detailed derivation of Eqs (26)
and (27). We start with the F1, given by Eq. (16a). Using
the expression for pk(t) from Eq. (25) and the moments
of the atom-number operator from Eq. (17), we obtain

〈n̂k〉′ = N |Jk(y)|(Jk−1(y)− Jk+1(y))y′, (A1)

where we used J ′k(y) = 1/2(Jk−1(y) − Jk+1(y)) and in-
troduced a function of δ

y =
4J

δ
sin
( δt

2~
− πn

)
. (A2)



9

Its derivative is equal to

y′ =
4J

δ2

[
− sin

( δt
2~
− πn

)
+
δt

2~
cos
( δt

2~
− πn

)]
.

(A3)

When the measurement is performed after many Bloch
periods, the second term in the parenthesis dominates
leading to an approximate expression

〈n̂k〉′ ' |Jk(y)|(Jk−1(y)− Jk+1(y))

× 2J

δ

t

~
cos
( δt

2~
− πn

)
. (A4)

The variance of the atom-number operator is simply

∆2n̂k = N |Jk(y)|2(1− |Jk(y)|2). (A5)

Bringing together Eqs (A4) and (A5) gives

F1 =
∑
k

(〈n̂k〉′)2

∆2n̂k
= 16

(J
δ

)2( t
~

)2

f(t), (A6)

where f(t) is the time-dependent function

f(t) =
1

4
cos2

( δt
2~
− πn

) M∑
k=1

|Jk−1(y)− Jk+1(y)|2

1− |Jk(y)|2

(A7)

reaches its maximum f(t) = 1 at the multiples of the
Bloch period, t = nTB , n ∈ N.

In the next step, we calculate the F1 and F2 in the
vicinity of t = nTB , when almost all atoms are located
in the central site and only a small fraction is present in
the two neighboring sites. Therefore

p±1 = ε, p0 = 1− 2ε, (ε� 1). (A8)

The approximate expression for the F1, obtained from
Eq. (16a) gives

F1 ' N
(p′0)2

p0(1− p0)
+ 2N

(p′1)2

p1(1− p1)
, (A9)

where we used the symmetry between ±1 (hence the fac-
tor of 2) and ' stands for the dropping of p±2, etc. Plug-
ging Eq. (A8) above, we obtain

F1 ' N
(1− 2ε)′2

(1− 2ε)2ε
+ 2N

(ε′)2

ε(1− ε)
' 4N

ε′2

ε
. (A10)

We now calculate the F2. Using the expression for the
moments of the atom number operator, we have directly
from Eq. (16b)

F2 = N
∑
k 6=j

p′k
pk(1− pk)

p′j
pj(1− pj)

(−pkpj) = −N
∑
k 6=j

p′k
(1− pk)

p′j
(1− pj)

=

−N
∑
k,j

p′k
(1− pk)

p′j
(1− pj)

+N
∑
k=j

p′k
(1− pk)

p′j
(1− pj)

= −N

(∑
k

p′k
(1− pk)

)2

+N
∑
k

(
p′k

(1− pk)

)2

=

= −N
(
−2ε′

2ε
+ 2

ε′

1− ε

)2

+N

[(
−2ε′

2ε

)2

+ 2

(
ε′

1− ε

)2
]

= 4N
ε′2

ε
− 2N

(
ε′

1− ε

)2

' 4N
ε′2

ε
= F1. (A11)

Thus we showed that when ε → 0 (thus t → TB), the
F1 and F2 are equal. Therefore, using formula for the
sensitivity (15), which for a single shot (ν = 1) is

∆2g̃ml =
F1 + F2

F 2
1

, (A12)

we obtain

∆2g̃ml =
2

F1
. (A13)

This results, combined with Eq. (A6), gives the Eq. (27)
from the main text.
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100, 080404 (2008).

[43] M. Fattori, C. D’Errico, G. Roati, M. Zaccanti, M. Jona-
Lasinio, M. Modugno, M. Inguscio, and G. Modugno,
Phys. Rev. Lett. 100, 080405 (2008).

[44] M. Landini, S. Roy, G. Roati, A. Simoni, M. Inguscio,
G. Modugno, and M. Fattori, Phys. Rev. A 86, 033421
(2012).

[45] R. Scheunemann, F. S. Cataliotti, T. W. Hänsch, and
M. Weitz, Phys. Rev. A 62, 051801 (2000).

[46] L. Masi et al., in preparation.


