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We report the experimental realization of a new kind of optical lattice for ultra-cold atoms where
arbitrarily large separation between the sites can be achieved without renouncing to the stability
of ordinary lattices. Two collinear lasers, with slightly different commensurate wavelengths and
retroreflected on a mirror, generate a superlattice potential with a periodic “beat-note” profile where
the regions with large amplitude modulation provide the effective potential minima for the atoms.
To prove the analogy with a standard large spacing optical lattice we study Bloch oscillations of a
Bose Einstein condensate with negligible interactions in the presence of a small force. The observed
dynamics between sites separated by ten microns for times exceeding one second proves the high
stability of the potential. This novel lattice is the ideal candidate for the coherent manipulation
of atomic samples at large spatial separations and might find direct application in atom-based
technologies like trapped atom interferometers and quantum simulators.

Optical lattices are powerful tools to study and manip-
ulate ultra-cold gases [1]. They are used to investigate
superfluidity in quantum gases [2, 3], to study non-linear
dynamics of matter waves [4], to perform quantum sim-
ulation of solid-state physics models [5] and to operate
atom interferometers for high precision measurements
of forces [6] and fundamental constants [7, 8]. The
optical interference on which optical lattices are based
determines their key stability properties. Optical lattices
created by retro-reflecting a laser beam of wavelength λ
on a single mirror are particularly appealing since the
lattice period is exactly λ/2, is strongly immune to beam
pointing instabilities [9] and the phase noise can be sup-
pressed by stabilizing the mirror motion [6]. In addition,
the residual intensity noise of optical lattices is normally
not an issue, since it induces common-mode fluctuations
of the site potentials. The spatial periodicity of optical
lattices based on counterpropagating beams is limited to
the range from 0.2 to 0.7 µm with only few exceptions
[10], mainly due to the available narrow-linewidth laser
sources. There is however a strong interest in creating
periodic potentials with larger separations between
the different sites for a variety of applications ranging
from trapped-atom interferometry, where the device
sensitivity scales proportionally to the separation of
the trapped modes [11], atomtronics [12], quantum
simulation of Hubbard-like models [13–16], studies on
low dimensional systems [17] and quantum computing
[18, 19]. This has led to the realization of different kinds
of trapping potentials using acousto-optic deflectors
[20], spatial light modulators [21], laser beams crossing
at small angles [22] and magnetic traps [23]. However
none of these methods can offer the stability of opti-
cal lattices realized with counterpropagating laser beams.

In this work we demonstrate an innovative, large-
spacing optical superlattice based on the beating note
between two retroreflected optical lattices with slightly

different wavelengths λ1 and λ2, i.e. |λ1 − λ2| < λ1,2.
We show that, when the two wavelengths fulfill the
condition nλ1 = (n + 1)λ2 with n integer, the resulting
potential is periodic and, for sufficiently low lattice
depths, the energy spectrum of the superlattice is equal
to the one of an optical lattice with wavelength nλ1.
Working with n = 20 and standard laser wavelengths
around 1 µm, we realize an effective lattice period
around 10 µm. Our “beat-note” superlattice (BNSL)
is analog to the well-known superlattices that have
revolutionized the field of semiconductors [24], allowing
to create effective lattice periods one order of magnitude
larger than the intrinsic one [25]. Similar approaches
have been used also in optics using multilayer dielectric
structures to observe transport phenomena typical of
charged particles using light waves [26, 27]. In quantum
gases experiments, second harmonic superlattices, i.e.
for n = 1, have been used to create arrays of double well
potentials [28].

To investigate the properties of the BNSL, we prepare
a Bose-Einstein condensate in its ground state, we em-
ploy it to measure the energy gaps between the first three
bands and we study Bloch oscillations in the presence of
an external force. These measurements demonstrate that
the BNSL is equivalent to a standard lattice up to depths
of the order of the recoil energy of the two combined lat-
tices. Moreover, when cancelling the interatomic interac-
tions by means of a magnetic Feshbach resonance, the dy-
namics exhibits a coherence up to 1 s, demonstrating how
this new techinique provides very stable potentials with
an arbitrarily long periodicity. The experimental mea-
surements are compared to numerical simulations, which
are also useful to assess the behavior of the BNSL in the
large depth limit.

The superposition of two standing waves with the same
optical depth V0 and with a relative phase φ provides a
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FIG. 1. a) Plot of the beat-note optical lattice (thin line)
and the correspondent effective potential Veff (thick line). b)
Profile of the ground-state atomic wavefunction in the pres-
ence of a BNSL with a depth V0 = 0.5ER+ (thin line) and in
the presence of a standard large spacing optical lattice with
a depth equal to the effective depth of the BNSL (thick line).
c) Density distribution of a non interacting condensate in the
ground state of the BNSL that shows the spatial modulation
with a period of 10 µm.

trapping potential for the atoms

V (x) = V0[1− cos(k−x− φ) cos(2k+x+ φ)] (1)

with k+ = (k1 + k2)/2, k− = k2 − k1 and k1,2 = 2π/λ1,2
[29]. The potential is the sum of a constant term V0
plus a sinusoidal one with a fast spatial modulation of
periodicity d+ = π/k+ and with an amplitude varying
over a distance d− = π/k−. When the two wavelengths
fullfil the commensurability condition nλ1 = (n + 1)λ2,
the potential is periodic over a distance d− = nλ1/2 re-
alizing a BNSL (see Fig. (1a)). As pointed out in [30],
a quantum particle evolving in a potential with a peri-
odic spatial modulation experiences an attractive effect
in comparison to a constant one with the same average
value. The reason is that, although the modulation nat-
urally increases the kinetic energy due to a coupling to
high momentum states, the resultant modulation of the
wavefunction, with maxima localized at the minima of
the trap, causes a stronger reduction of the potential en-
ergy. In the perturbative limit, i.e. V0 << ER+ with
ER+ = ~2k2+/2m, this attractive effect can be quanti-
fied with a negative potential equal to the square of the
modulation amplitude divided by 8ER+ [29, 31]. As a
consequence, we can approximate Eq.(1) with the effec-
tive potential

Veff (x) = V0 −
V 2
0 cos2(k−x− φ)

8ER+

(2)

FIG. 2. a) Center of mass oscillation of a BEC trapped in
a single site of the BNSL. The evolution is the result of the
beating between the frequencies related to the first two energy
gaps of the spectrum ω1 and ω2. The line is a fit to the
data. b) Measured values of ω1 and ω2 as a function of V0

compared with the theoretical values, line and dasehd line
respectively. Error bars on the lattice depth take into account
the uncertainties of the beam size on the atoms and of the
optical power. The insets show the BNSL potential around
the minimum and compare two by two the wavefunctions of
the first three on-site energy eigenstates for V0 = 4ER+, using
dashed, solid and dotted lines respectively.

which is equivalent to the one of an optical lattice with
periodicity d−. The low V0 limit implies that the tun-
neling between local minima of the potential in Eq.(1) is
larger than the on-site energies such that the wavefunc-
tion is minimally affected by the fast spatial modulation
of the trap (see Fig. 1b). This is no longer true for
V0 ' ER+ where the perturbative approach of Eq. (2)
cannot be applied. However, by rescaling the energies
with an effective mass, the first bands of the BNSL con-
tinue to map onto those of a single wavelength lattice
[29]. Interestingly, for V0 >> ER+, the lowest states of
the BNSL are strongly localized by the short-period lat-
tice, but their separation is set by the large spacing lat-
tice. This opens interesting perspectives for the creation
of strongly confined systems with macroscopic separation
[29].

In order to study the properties of the BNSL in the low
V0 limit we employ techniques similar to those we used
previously with long-period lattices based on angled laser
beams [11]. We work with a Bose-Einstein condensate of
39K in the state |1, 1〉 where the interatomic interactions
can be tuned close to zero exploiting a broad magnetic
Feshbach resonance at 400 G [32, 33]. Once we have
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evaporatively cooled the gas to condensation, we adia-
batically ramp up two optical lattices along the x axis
(see Fig. (1c)) with wavelengths λ1 = 1064.5 nm and
λ2 = 1013.7 nm. A dipole trap beam that propagates
along the same axis provides a radial harmonic potential
with ωy,z ≈ 2π ·200 Hz. The two lattices provide a BNSL
with d+ ' 0.5 µm and d− = 10.6 µm with n = 20. Since
the position of the effective minima depends on the rela-
tive phase φ between the two combined lattices, both the
laser frequencies are locked to the same reference cav-
ity with a relative stability of the order of ten kHz and
tuned to provide φ = 0 [29]. We finally detect the in-situ
atomic density from the orthogonal z direction (see Fig.
(1c)), ramping up the optical lattices to a a final depth
V0 ∼ 200 nK ≈ ER+ ∼ 220 nK. The observed spatial
separation of 10 µm between independent condensates
localized in the effective sites of the BNSL confirms our
expectations.

In our system we cannot calibrate the lattice depth
using standard techniques based on atomic diffraction,
since the initial size of the condensate is smaller than d−.
We therefore use a different method based on the study
of the oscillation frequency of the condensate in a single
site of the BNSL, in regimes where the tunneling energy
Jeff to neighbouring sites is negligible. The dynamics is
simply triggered by a sudden shift of the minima of the
potential. A typical measurement is shown in Fig.2a)
where we intentionally shift the minima by an amount
sufficiently large to project the initial condensate wave-
function on the first three bands. The center of mass
oscillation of the gas is then characterized by the beat-
ing of two frequencies that correspond to the first two
energy gaps. In Fig.2b) we compare the measured values
with the theoretical expectations. If V0 . ER+ , accord-
ing to Eq. (2), the effective potential is sinusoidal and
its anharmonicity leads to two slightly distinct frequen-
cies that scale with the square root of Veff , i.e. linearly
with V0. For larger values of V0, where the analogy with
a large spacing standard lattice is no longer valid, the
first energy gap of the BNSL deviates from the linear be-
haviour, while the second one reaches a maximum and
then decreases to zero. In the left inset of Fig.2b) we un-
derstand that the first gap becomes asymptotically equal
to the potential shift of the two sites adjacent to the one
with the lowest energy. The reduction of the second gap
is instead due to the negligible energy difference between
the antisymmetric and symmetric states of the second
and third band respectively, as shown in the right inset
of Fig.2b).
In order to prove the analogy between a BNSL and a sin-
gle wavelength large spacing optical lattice in the low V0
limit, we finally need to measure Jeff and observe the co-
herent dynamics between its different sites. We then per-
form spatial Bloch oscillations, starting with a conden-
sate loaded in a single site of the BNSL and detecting the
subsequent oscillation of the density distribution, which
spans few sites of the BNSL, driven by an external force
[34–36]. In the following we describe the experimental

t=0 t=50 ms t=100 ms

t=150 ms t=250 ms t=300 ms

a)

b)

FIG. 3. a) Absorption images of the BEC during a spatial
Bloch oscillation in presence of an external force, character-
ized by a breathing motion of the width. In b) we report
the time evolution of fractional atom number in the starting
site N0 and the sum of the populations in the neighbouring
sites Ntr. The solid line is a fit perfomed using Eq. (3) times
an additional exponential decay of the amplitude. The error
bars represent the statistical uncertainty and correspond to
the standard deviation of the mean.

procedure. We implement a condensate of N ' 5·103 and
an initial depth of the BNSL V0 ≈ 1.5ER+ , which ensures
a negligible tunneling between neighbouring sites. A spu-
rious external magnetic field gradient that causes an ac-
celeration ≈ 10−2g, where g = 9.81 m/s2, is compensated
by the optical force provided by the dipole trap propa-
gating along the x axis whose focus position is shifted
with respect to the condensate by a distance equal to the
Rayleigh range of the beam. In this way, by tuning the
intensity of the dipole trap, we can finely adjust the to-
tal external force F around zero, both in magnitude and
sign, over a range of ±5·10−4 mg [29]. Once set the work-
ing value of the force, we switch off the dipole trap that
provides confinement along x and we decrease the BNSL
depth to V0 = 70(±2) nK ∼ 0.3ER+ . The procedure is
performed adiabatically with respect to the trapping fre-
quencies of a single site but on a time-scale much shorter
then the Bloch period. During the oscillation we reduce
the scattering length to the level of 0.05 a0, where a0 is
the Bohr radius, in order to minimize the decoherence in-
duced by interactions [37]. In Fig.3a) we report examples
of absorption images of the condensate during one Bloch
oscillation. Since at t = 0 all the atoms are localized in
a single site, the center of mass motion is frozen and we
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observe only a symmetric breathing evolution of the size
[34, 36]. The on-site fractional populations evolve in time
as [36]:

nl(t) =
∣∣∣Jl(4Jeff

δ
sin
(δt
~

))∣∣∣2 (3)

where Jl are Bessel functions of the first kind and δ =
Fd− is the energy difference between neighbouring sites.
Experimentally we count the atoms that remain in the
starting well N0 and the ones that tunnel to the other
sites Ntr. In Fig.3b) we report a typical time evolution
of Ntr =

∑
i 6=0(N+i + N−i) in unit of the total number

Ntot at each time. We observe a clear oscillation with
the average amplitude reducing on a timescale of ≈ 1 s.
To our knowledge the observed dynamics is characterized
by the longest coherence time reported in the literature
for trapped condensates separated by a distance of tens
of microns [20, 39–42]. These results prove the high in-
trinsic stability of the BNSL. The observed decay of the
oscillation contrast might be due the presence of a spu-
rious harmonic potential of the order of 1 Hz along the x
axis. Another source of decoherence could be the residual
interaction energy. Bloch oscillations using more homo-
geneous forces and experiments performed with variable
atom numbers will allow to identify what is currently
limiting the performance of our Bloch oscillations inter-
ferometer.
We fit the data with a phenomenological model that in-
cludes Eq. (3) and an exponential decay of the amplitude
toward a steady state population [29]. From the fit we
can estimate the Bloch period tB , that is related to the
external force via the relation tB = h/δ = h/(Fd−),
and the amplitude of oscillation A, that is linked to
the tunneling energy via the equality A = 4Jeff/δ (see
Eq.3). We finally investigate the linear dependence of δ
on the external force F , calibrated as a function of the
dipole trap power perfoming time of flight experiments
(see [29]). Results are reported in Fig.4a), where the
dotted line indicates the theoretical predictions, while
the shaded area takes into account the uncertainty in
the calibration of the external force. Note that only a
limited range of forces has been explored because out-
side it, the small depth Veff ≈ 3 nK ∼ 0.015ER+ im-
plemented, would cause Landau-Zener interband transi-
tions and atom losses. This could be prevented increasing
V0, but the consequent reduction of the tunneling energy
Jeff would reduce also A and the visibility of the spatial
oscillations. In Fig.4b) we finally plot the amplitude A as
a function of δ and compare the results with the values
we expect from the estimation Jeff = (0.7 ± 0.05) Hz,
derived from the experimental calibration of V0. We note
that a good agreement is achieved in both plots, although
a deviation of the measurements from the expected val-
ues is observed for Bloch frequencies ≈ 2 Hz. For small
values of the force, precise measurements are currently
limited by the decoherence sources described above.
In conclusion, we reported the realization of an innovative
superlattice based on the beat-note between two retrore-

FIG. 4. a) Energy difference between lattice sites (dots) de-
rived from the Bloch frequency measurements as a function of
the optical power of the beam used to tune the external force.
The horizzontal error bars correponds to the uncertainty on
the optical power. The dotted line is the theoretical predic-
tion for the best fit parameter provided by the calibration
and the shaded area takes into account its undetermination
[29]. b) Amplitude of the oscillation A as a function of the
energy difference between lattice sites. The error bars corre-
pond to the uncertainty of the amplitude and the frequency
provided by the fit of the oscillations. The solid line corre-
ponds to A = 4Jeff/δ. At lower values of δ the effect of force
inhomogeneities are more significant and both frequency and
amplitude deviate from theory. The dashed line is the re-
sult of numerical simulations where a longitudinal harmonic
potential of 1.5 Hz is included.

flected laser beams with commensurate wavelengths. Our
studies prove that the resulting potential is equivalent to
a large-spacing single-wavelength optical lattice in the
limit of small depths, i.e. V0 < ER+ . For larger values of
V0, BNSLs can be used to create arrays of atomic ensem-
bles with negligible tunneling between the sites. The high
stability of a BNSL is demonstrated observing the longest
coherent evolution ever reported for a BEC trapped in
spatial modes separated by tens of microns. We expect
that BNSLs will strongly contribute to the improvement
of the sensitivity of trapped atom interferometers [43], for
example realizing arrays of double wells potentials with
two collinear BNSLs with a periodicity of one twice the
other [44]. In addition, the intrinsic stability of BNSLs
makes them a valuable tool for the precise manipulation
of atoms at large distances in several future quantum
technologies [45–47].
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