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Gravitational and Coriolis forces in crystal neutron interferometry. II. Numerical simulations

E. Massa ,* G. Mana ,† and C. P. Sasso ‡

Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy

(Received 1 February 2024; accepted 9 October 2024; published 20 December 2024)

Previous studies have proven that neutron interference using split-crystal interferometers is possible. This
proof paves the way for extended arm separation and length, opening the doors to new experiments exploring
quantum mechanics and gravity. In a previous publication, we took a closer look at how gravitational and
Coriolis forces affect dynamical diffraction in crystal interferometry. This paper uses the formalism developed,
which allows for extended capabilities in studying the interferometer operation, to investigate numerically the
contributions to the neutron phase of geometrical aberrations and dynamical diffraction. In addition, this work
explores an alternative geometry, with the interferometer operated vertically, to determine the gravitationally
induced quantum-mechanical phase independently of the dynamical diffraction and self-weight bending of the
interferometer.

DOI: 10.1103/PhysRevA.110.062819

I. INTRODUCTION

Crystal interferometers were developed for x-rays by
Bonse and Hart [1,2] and adapted to thermal neutrons
by Rauch and coworkers [3]. In these interferometers, a
monochromatic x-ray or neutron beam is split by Laue
diffraction, recombined by two mirrorlike crystals, and mixed
coherently by the last crystal (analyzer). They were used to
measure the quantum-mechanical phase resulting from the
neutron’s interaction with Earth’s gravitational field.

In these experiments, known as COW, after Colella, Over-
hauser, and Werner [4–7], the interference fringes are scanned
by tilting the interferometer (while maintaining the Bragg
condition) around the incident beam, which remains horizon-
tal. When the interferometer is progressively set up vertically,
for instance, with the diffracting planes of the analyzer at a
higher gravitational potential than the splitter ones, the mo-
mentum of the neutron on the higher arm is lower than that on
the lower arm. This results in a difference in the quantum-
mechanical phases accumulated by the split wave packets,
which is proportional to the area of the interferometer loop.

The bending of the interferometer during the tilting, caused
by its weight, poses a challenge. To address it, x-rays were uti-
lized to determine the amount of bending [5,6]. Alternatively,
in a related study [7], harmonic pairs of neutron wavelengths
were used to measure and correct for it.
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It is possible to scan the interference fringes by varying
either the crystals’ separation [8] or alignment [9,10] of a
vertically operating split-crystal interferometer. These scans
help to tackle the problems of geometrical aberrations and
bending. The metrology and technologies required to detect
and control the crystals’ displacement and attitude have been
developed to measure the lattice parameter of silicon by a
split-crystal interferometer, although an order-of-magnitude
improvement is necessary [11,12].

Our study focuses on analyzing numerically the quantum
interference of neutrons in a geometrically aberrated interfer-
ometer for vertical use with split crystals. We did not consider
intrinsic mismatching of the diffracting planes and assumed a
perfect crystal interferometer. A detailed investigation of the
effect of crystallographic imperfections is given in [13].

Our motivation stemmed from the discovery that neu-
tron interference using split-crystal interferometers is feasible
[14] and from the observation that the measurements of the
gravity-induced phase deviate from the theoretical prediction
by approximately 1%, as noted by Littrell and colleagues [7].

The measured value of the interference-fringe phase in
Earth’s rotating frame is affected by the Sagnac effect and
dynamic diffraction in the interferometer crystals. Extensive
calculations were performed to apply the necessary correc-
tions [6,13,15–18].

We built upon the previous findings by incorporating the
Sagnac effect from first principles, using the transfer-matrix
formalism to describe how neutrons propagate between and
inside the interferometer crystals while affected by gravita-
tional and Coriolis forces, studying aberrated interferometers,
and recalculating how the Coriolis force and dynamic diffrac-
tion contribute to the phase difference of the interfering waves.

This paper is organized as follows. Section II summarizes
the results of our previous study [8] and provides the basic
equations describing the interferometer operation. The for-
malism, conventional choices, symbols, and notations adopted
here are strictly adhered to [8]. To ascertain the visibility and
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phase of the tipping and separation interferograms, numerical
calculations were performed. The outcomes can be found
in Secs. III and IV. Special attention was paid to precisely
extracting the gravitational quantum phase from the measured
one while accounting for any uncertainty due to geometrical
aberrations and dynamical diffraction.

We tested our mathematical formalism and numerical code
by replicating the literature values of the phase of the dy-
namical diffractions [6,7]. The results are given in Sec. III B.
Section IV B explores the phase modulation of the neutron
interference by varying the split crystals’ separation and
alignment of the Bragg angle. It shows that separation and an-
gular interferograms are indistinguishable and that dynamical
diffraction can be made harmless by rematching in real time
the mutual Bragg angle of the split crystals, which, otherwise,
the neutrons perceive as mismatched.

All symbolic and numerical calculations were done using
Mathematica [19]. The relevant notebooks are available in the
Supplemental Material [20]. To view and interact with them,
WOLFRAM PLAYER can be downloaded [21].

II. NEUTRON INTERFEROMETRY

A. Interferometer model

As illustrated in Fig. 1, the first interferometer crystal splits
a neutron beam in two. These separate beams are brought
back together in the last crystal, which acts as an analyzer,
with the help of two mirrorlike crystals. To vary the phase
of the interference fringes, the optical length difference of the
interferometer arms must be changed, for example, by rotating
an aluminum slab (which acts as a phase modulator) inside the
interferometer, tipping the interferometer about the incoming
beam, or varying the Bragg angle alignment or separation (in
this case, provided the interferometer is set up vertically) of
the split crystals. A detailed description of the interferometer
operation can be found in our previous paper [8]. Below is a
summary of the equations required to compute the visibility
and phase of the interference fringes.

The integrated intensity of the n = o, h beam forward
transmitted or reflected by the interferometer is

In = Jn[1 + �n cos(�n)], (1)

where Jn, �n, and �n are the mean count rate, fringe visibility,
and phase, respectively. Since it yields the same integrated
intensity as a Gaussian Schell model of a partially coher-
ent beam [8,22], we limit ourselves to a coherent Gaussian
source ψin(x, y) having a radius equal to the coherence length
[22,23]. The propagation axis of the incoming beam is as-
sumed to be parallel to the Ko wave vector satisfying the
Bragg condition. We do not model the monochromator used
to select the neutron wavelength.

Since the neutron propagation (in both free space and per-
fect crystals) is separable, if ψin(x, y) also is, the integrations
over qy (the momentum conjugate to the y coordinate) needed
to calculate In can be carried out analytically. The result proves
that qy does not contribute, up to the first order, to the fringe
phase. For more information, see Eqs. (26) and (28) in [8].
Therefore, we limit ourselves to two dimensions, x and z, and
from now on, we indicate the momentum conjugate to the x
coordinate by q.

FIG. 1. Crystal interferometer (crystal top view). Abbreviations
are as follows: S, splitter; M1 and M2, mirrors; A, analyzer. The
crystals are plane parallel and symmetrically cut. Red and blue rays
indicate the first and second interferometer arms, respectively. The
horizontal x axis is orthogonal to the diffracting planes, the crystal
vertical y heads inside the drawing, and the optical axis z is normal to
the crystals’ surfaces. The diffraction geometry is coplanar, with the
optical axis lying in the reflection plane. zS and zDA are the source and
detector distances from the splitter and analyzer, respectively. The
skewness 2�M = zM2 − zM1 is the mirrors’ gap; zM is the mirrors’
mean distance from the splitter. �B is the Bragg angle; θ is the
rotation angle about the crystal vertical. The effective area of the in-
terferometer loop is varied either by tipping the interferometer by the
angle α about the incoming beam or by changing the skewness from
2�M to 2�M + s cos(�B). The crystal thicknesses are tS (splitter),
tM1 and tM2 (mirrors), and tA (analyzer). h = −hx̂ is the reciprocal
vector; the Ko,h wave vectors of the neutron o and h states satisfy
the Bragg condition. In the absence of geometrical aberrations (ideal
geometry) tS = tA, tM1 = tM2, zM1 = zA2, and zM2 = zA1.

The mean count rate, visibility, and phase of the integrated
interferograms are given by (see [8])

Jn ∝
∑
i=1,2

∫ +∞

−∞
|Xin(q)ψ̃in(q − q0)|2 dq, (2a)

	n ∝ exp [i( fxA0 + fxA1 + h�u + 2 fz�M�z)]

×
∫ +∞

−∞
eiq�xX ∗

1n(q)X2n(q)|ψ̃in(q − q0)|2 dq, (2b)

�n = 2|	n|
/

Jn, (2c)

�n = arg(	n), (2d)

where the tilde indicates the Fourier transform, n = o, h is the
quantum state of the neutron leaving the interferometer and
i = 1, 2 is the interferometer arm.

The elements of the transfer matrices propagating the neu-
trons along the arms of the interferometer are

X1o(q) = R(q − qA; tA)R(q − q1; tM1)T (q − qS; tS ), (3a)

X2o(q) = T (q − qA; tA)R(q − q2; tM2)R(q − qS; tS ), (3b)
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X1h(q) = T (−q + qA; tA)R(q − q1; tM1)T (q − qS; tS ), (3c)

X2h(q) = R(q − qA; tA)R(q − q2; tM2)R(q − qS; tS ). (3d)

The reflection and transmission coefficients, R(q; t ) and
T (q; t ), where t is the crystal thickness, are given in [8].

In (2b), �z and 2�M are the interferometer defocus (a z
translation of the analyzer away from the point where the in-
terferometer arms are recombined) and skewness (the mirrors’
gap), respectively, �x is the x shear of the interfering beams.
For a list of the symbols used, refer to Fig. 1 and Appendix F
of [8].

Furthermore,

A0 = 2(tMzM + zM1zM2 − �21�M ) tan(�B) (3e)

is the area enclosed by the unperturbed interferometer loop
from the splitter to the focus and back,

A1 = −2(tA + zDA)�z tan(�B) (3f)

is the area enclosed by the interfering beams from the focus to
the detector and back, and

�u = − fx
(
t2
S + t2

A − t2
M1 − t2

M2

)
tan(�B)

2h
(3g)

is the difference between the (splitter, mirrors, and analyzer)
diffracting-plane displacements perceived by the free-falling
neutron. The A1 sign opposes the A0 one because, with a
positive defocus, the loop from the focus to the detector is
opposite that from the splitter to the focus.

In (3a)–(3d), with a slight abuse of language,

q0 = fxzD,

qS = q0 − fx(zS + tS/2),
(4)

qi = qS − fx(tS/2 + zMi + tMi/2),

qA = qi − fx(tMi/2 + zAi + tA/2)

are the momenta transferred by the gravitational and Coriolis
forces acting on the n = o, h states. Note that qA is inde-
pendent of the arm along which it is calculated. Here, fn =
( fx, fny, fnz ) is the pooling of the gravitational and Coriolis
forces acting on the n = o, h neutron state, and f = (fo +
fh)/2 and 2�f = fh − fo are their mean and difference, respec-
tively (see [8]).

To achieve full visibility of interference fringes, the splitter
and analyzer must have the same thickness, and so should
the two mirrors, i.e., tS = tA and tM1 = tM2. There are two
possibilities that are worth considering: tS = tA = tM1 = tM2

and 2tS = 2tA = tM1 = tM2. Additionally, a null defocus is
necessary. This means that zA1 = zM2 and zA2 = zM1. In the
2tS = 2tA = tM1 = tM2 case, the interferometer focuses the in-
terfering beams on the exit surface of the analyzer, allowing
for good visibility even with a relatively large misalignment
of the split crystals.

B. Pooled forces

The pooling of the gravitational and Coriolis forces is given
in Appendix B of [8]. Here, we specify the expressions of
Earth’s gravitational acceleration and angular velocity refer-
ring to [5–7].

If the interferometer is rotated counterclockwise about
Ko = K[ sin(�B)x̂ + cos(�B)ẑ] (which is assumed to be hor-
izontal) by the angle α, the acceleration due to Earth’s gravity
in the interferometer reference frame is

g(α) =
⎡
⎣ cos(�B) sin(α)

cos(α)
− sin(�B) sin(α)

⎤
⎦g,

where g ≈ 9.79978 m/s2 at Columbia, Missouri [24]. Note
that, when α = 0, the crystal vertical points down. We do not
discuss a misalignment between the rotation axis and Ko. If
misaligned, the gx(α) acceleration component—the only ef-
fective component in our problem—is reduced proportionally
to the inclination of the rotation axis relative to the reflection
plane [25].

In [5–7], Ko is oriented from north to south along the local
meridian. Therefore, Earth’s angular velocity in the interfer-
ometer reference frame is

ω =
⎡
⎣− cos(�B) cos(ϑL ) sin(α) − sin(�B) sin(ϑL )

− cos(ϑL ) cos(α)
sin(�B) cos(ϑL ) sin(α) − cos(�B) sin(ϑL )

⎤
⎦ω,

where the colatitude angle is ϑL = 51.37◦ and ω ≈
72.7 µrad/s (counterclockwise about the south to north axis).

III. TIPPING INTERFEROGRAM

To assess the accuracy of the mathematical model in [8]
and its numerical implementation, we used Eqs. (2) to quan-
tify the dynamical-diffraction contribution to the fringe phase
in the interferometers used by Werner and coworkers [6] and
Littrell and coworkers [7]. We focused more on [6] because
the data therein are more easily analyzed from the information
given.

Our analysis differs from the previous ones [6,15–18] in
that we took into account geometrical aberrations and the
Coriolis force from first principles. The Mathematica code
implementing numerically the governing equations is avail-
able in the Supplemental Material, part b [20].

A. Measurement equations

When the interferometer is rotated about the incident beam,
the measured quantity is the

�(α) = fxA0 + fxA1 + h�u + �D + �b (5)

fringe phase vs the sine function of the tipping angle α. We
omitted the subscript indicating the o or h state leaving the
interferometer because, due to the absence of absorption, the
dynamical phase �D exhibits a difference equal to π indepen-
dently of α.

The measurement goal is to extract the gravitationally in-
duced phase

�g(α) = m2A0 cos(�B) sin(α)g

h̄2Kz
= m2A0 sin(α)g

h̄2K
, (6)

which is the first term contributing to fxA0. Assuming a
difference in the mirror thickness 2�21 of the order of 2 µm
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[6], the contribution of �21�M to the A0 area [see (3e)] can
be neglected.

To describe the propagation of a plane wave, different sign
conventions are possible for the phase term, the choice of
which has implications for the interpretation of the phase
delays. With our convention (see [8]), forward propagation
implies that the phase increases with time and decreases with
space. Therefore, a positive sign of �g encodes a neutron
momentum in the second arm that is lower than the one in
the first, as expected.

The second term contributing to fxA0,

�S (α) = 2mA0 cos(ϑL ) cos(α)ω

h̄
, (7)

which is analogous to the Sagnac phase in optics, and the
remaining terms of (5) must be quantified and subtracted from
�(α).

The �b contribution is due to the self-weight bending of the
interferometer: The diffracting planes of the splitter, mirrors,
and analyzer mismatch as they are rotated about the incident
beam. The discussion of the gravitationally induced strains is
outside the scope of the present work. Information is available
in [6,7,26].

The �z defocus shears the interfering beams and changes
the area of the interferometer loop from A0 to A0 + A1.
Although the interferometer should have a null defocus, the
surface damage removal after cutting causes geometrical im-
perfections [12]. As per our experience, each crystal deviation
from the average thickness is up to at least ±1 µm, and the
defocus is up to at least ±3 µm. For instance, [6] reported that
the tolerance of the blades’ thicknesses and their separations
is 2 µm. Hence, the propagated defocus tolerance is 6 µm.
Figure 2 (top) provides an example of the contribution of the
defocus fx(α)A1 to the fringe phase.

Owing to the neutron parabolic motion, dynamical diffrac-
tion takes the same form as in the case of the propagation in
a deformed crystal. The perceived shear strain qX /K , where
X = S, 1, 2, A indicate the splitter, mirrors, and analyzer, is
opposite to the angle at which the misset neutron hits the
crystals [8] [see (4)]. It makes the phases of the reflection and
transmission coefficients dependent on the tipping angle. The
implications of this dependence on the dynamical phase �D

are discussed in the next section.
In the crystal reference frame, the perceived displacement

of the diffracting planes is opposite to half the neutron fall
while traversing the crystal [8]. Jointly with nonequal thick-
nesses of the interferometer crystals, it originates the h�u(α)
phase difference between the interfering wave packets given
in (3g). As shown in Fig. 2 (bottom), if the same thickness
is targeted for all crystals, the ±2 µm deviations from the
average specified in [6] do not cause significant phase excess
(defect). Note that this is not true if the design specification of
the mirrors’ thickness differs from that of the splitter-analyzer
pair.

B. Dynamical diffraction

Unwanted phase shifts occur due to the dynamical diffrac-
tion in the interferometer crystals, as evidenced by the
complex nature of the transmission and reflection coefficients.

FIG. 2. Distribution (gray area) of the A1 fx (top) and h�u (bot-
tom) phase excesses (defects). They form a bundle of nearly straight
lines. The interferometer parameters and 2-µm geometry tolerances
are from [6] (see Table I). The detector distance from the inter-
ferometer is 0.5 m. The defocus is uniformly distributed in the
[−6, +6] µm interval.

The total contribution to the fringe phase,

�D(α)= arg

[∫ +∞

−∞
eiq�xX ∗

1n(q)X2n(q)|ψ̃in(q−q0)|2 dq

]
, (8)

must be evaluated numerically. Table I gives the physical and
geometrical parameters used in the computations.

The �x shear of the interfering beams arises from both de-
focusing and skewness. Both contributions are very small, and
therefore, the exp(iq�x) factor will be omitted. See Eq. (23d)
in [8] for more information.

The Coriolis forces acting on the h and o states differ in
their z components, resulting in different axial momenta trans-
ferred to the neutron. This difference originates the � fzt2/2
offset of the arguments of the crystals’ transmission and re-
flection coefficients (see Eqs. (13a) and (13b) in [8]) and
makes the effective crystal thickness different from the geo-
metrical one. For typical interferometers, the thickness excess
or defect (see Eq. (9b) in [8]),

�t = � fzt2

2Kz
,

is a negligibly small fraction of the Pendellösung length.
Therefore, we omitted the � fzt2/2 offset in the numerical
computations. With this approximation, the Coriolis force
affects the dynamical diffraction only through the x compo-
nent of the pooled forces.
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TABLE I. Parameters used in the numerical computations. The diffracting planes are Si {220}. The 10-nm coherence length is associated
with the 0.4◦ divergence of the incident beam in [6]. The source and detector distances from the interferometer are zS = 1.5 and zDA = 0.5 m,
respectively. The digits in parentheses are the uncertainties from [6]. To keep the dynamical-theory formalism, we used the dimensionless
coefficients χ0,h of the Fourier expansion of the Fermi pseudopotential; see [8] for more information.

Shared by all cases
χ0 = χh = −2.382 × 10−6 n0 = 1 − 1.191 × 10−6 μ = 0
�0 = 10 nm d = 0.192015 nm h = 32.72 rad/nm

Case 1, symmetric geometry [6]
tM1 = tM2 = tS = tA = 2.464(2) mm zM1 = zM2 = zA1 = zA2 = 34.518(2) mm λ = 0.1417 nm
K = 44.3 rad/nm �e = 99.40 µm �B = 21.65◦

Case 2, symmetric geometry [7]
tM1 = tM2 = tS = tA = 3.077 mm zM1 = zM2 = zA1 = zA2 = 50.404 mm λ = 0.18796 nm
K = 33.4 rad/nm �e = 70.31 µm �B = 29.30◦

Case 3, skew-symmetric geometry [7]
tM1 = tM2 = tS = tA = 2.621 mm zM1 = zA2 = 49.449 mm zM2 = zA1 = 16.172 mm
λ = 0.21440 nm �e = 58.64 µm �B = 33.94◦

Case 4, split crystal
λ = 0.27160 nm �e = 39.46 µm �B = 45.00◦

Figure 5
tS = tA = 2.000 mm tM1 = tM2 = 2.000 mm zM2 = zA1 = 10.000 mm

Figure 6
tS = tA = 1.000 mm tM1 = tM2 = 1.000 mm zM1 = zA2 = 10.000 mm

Figure 7
tS = tA = 2.000 mm tM1 = tM2 = 4.000 mm zM1 = zA2 = 10.000 mm

When the tipping angle α was small, we approximated the
dynamical phase �D(α) by assuming ideal geometry (hence,
�x = 0) and constant ψ̃in(q − q0) (i.e., we assumed the spher-
ical wave approximation). Next, we expanded the integrand
of (8) around α = 0 to first order and averaged the oscillating
terms. The symbolic computations can be found in the Sup-
plemental Material, part a [20]. The result,

�D(α) = 16t (t + zM )

25(tzM + zM1zM2)
fx(α)A0 + O[sin2(α)], (9)

where t is the crystals’ thickness, is an extension of Eq. (61)
in [6] (which applies to the symmetric geometry and gravity
alone) to the skew-symmetric geometry and Coriolis force
cases.

To reduce the computational load, we assumed the in-
tegrands in (2a) and (8) were band limited, sampled the
transmission and reflection coefficients in �q steps accord-
ing to the Nyquist-Shannon theorem, and used Riemann
sums to approximate the integrals. We also approximated the
source by a spherical wave; i.e., we assumed ψ̃in(q; z = 0) ≈
const and changed the integration variable from q to q′ =
q − qS . We evaluated the integrands as products of the sam-
ples of the reflection and transmission coefficients shifted to
the right or left by the �qX /�q	 positions, where X = 1, 2, A
and the first and last �qA/�q	 samples are dropped. See the
Supplemental Material, part b [20], for more information.

We calculated the contribution �D(α) of dynamical
diffraction to the fringe phase for Werner et al.’s and Littrell
et al.’s interferometers described in [6,7]. Table II compares
the experimental and numerical �D(α) values given in [6,7]
with our analytical and numerical results.

Figure 3 (bottom) shows our predictions of the interfer-
ograms observed when tilting the symmetric interferometer
in [6] (see Table I) by the angle α. The highest visibility,

occurring when the tilt is null, deviates from the expected
unity value of 0.3%, which gives a rough idea of the numerical
accuracy.

The visibility loss observed away from the zero angle,
which corresponds to the horizontal reflection plane, is due to
the Bragg misalignments of the diffracting planes perceived
by the neutron because of their parabolic motion. These mis-
alignments are encoded in the qA − qS and qi − qS offsets of
the arguments of the reflection and transmission coefficients
of the analyzer and mirrors (see (3) and [8,22]).

TABLE II. Comparison of the experimental and numerical values
of the fringe phase given in [6,7] with our analytical and numerical
results. All values are expressed in radians. The experimental value
of the fringe phase � (stripped of the phase shift due to the self-
weight bending) is obtained from Figs. 5 and 7 of [6].

Source Value

Case 1, symmetric geometry
[6] analytical �D ≈ 2.69 sin(α)
This paper analytical �D ≈ 0.07 + 2.58 sin(α)
This paper numerical �D ≈ 0.07 + 2.76 sin(α)
[6] experimental � = 1.48 + 58.69 sin(α)
This paper analytical � = 1.52 + 59.21 sin(α)

Case 2, symmetric geometry
[7] numerical �D ≈ 9.08 sin(α)
This paper analytical �D ≈ 0.17 + 8.74 sin(α)
This paper numerical �D ≈ 0.16 + 8.81 sin(α)

Case 3, skew-symmetric geometry
[7] numerical �D ≈ 7.03 sin(α)
This paper analytical �D ≈ 0.12 + 6.75 sin(α)
This paper numerical �D ≈ 0.10 + 6.75 sin(α)
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FIG. 3. Top: dynamical diffraction phase �D; the orange line is
the best linear fit in the [−0.025, +0.025] interval of sin(α). Bottom:
tipping interferograms. The parameters used are for the symmetric
interferometer in [6] (see Table I).

Our approach to the dynamical diffraction differs from
those of Bonse and Wroblewski [16] and Horne [17]. A
comparison between Fig. 3 (bottom) and Werner et al.’s
Fig. 11 in [6] reveals that the predictions are essentially
the same. However, contrary to Bonse and Wroblewski’s
and Horne’s dynamical calculations, our model includes the
Coriolis force, which results in a phase shift of approximately
1.5 rad.

In Fig. 3 (top), we display our forecasted value of the
dynamical phase �D for the same interferometer. This phase
is similar to that observed by rocking the analyzer of a split-
crystal interferometer used to measure the lattice parameter
of silicon, as reported in [27] and explained theoretically in
[28,29].

We compared Fig. 3 (top) with Werner et al.’s Fig. 12 [6]
and Heacock et al.’s Fig. 8 (top) [13] (see also Table II).
The agreement is good; the opposite sign is due to the op-
posite tipping directions. Our �D linearization at α = 0 [see
(9)] is 0.07 + 2.58 sin(α) rad. The more accurate numerical
one is 0.07 + 2.84 sin(α) rad. Werner et al.’s linearization is
2.70 sin(α) rad (see Table II and Eq. (61) in [6]). In contrast to
us, they found �D(α = 0) = 0. These differences are due to
our inclusion of the Coriolis force in the interferometer model
and, consequently, to the different crystal misalignments per-
ceived by the neutron.

We obtained Werner et al.’s experimental value of the
fringe phase from Fig. 5 in [6]. After removing the phase
shift due to the self-weight bending reported in Fig. 7 of

FIG. 4. Dynamical diffraction phase �D. Littrell’s symmetric
(top) and skew-symmetric (bottom) interferometers (see [7] and Ta-
ble I). The orange line is the best linear fit in the [−0.025, +0.025]
interval of sin(α).

[6], �b(α) = 1.41 sin(α) rad, we obtained �(α) = [1.48 +
58.69+0.25

−0.25 sin(α)] rad. The uncertainty margins are the up-
per and lower limits of fxA1’s, which are shown in Fig. 2.
Our simulated value of the fringe phase is �(α) = [1.52 +
59.21 sin(α)] rad.

Figure 4 displays our �D(α) outcomes in the cases of the
symmetric and skew-symmetric interferometers described in
[7]. Table II compares our �D approximations in the neighbor-
hood of α = 0 and those estimated from Fig. 16 of [7], which
gives the �D/�g ratios. We used a web-based digitization tool
[30] to recover the 4.06% (symmetric geometry) and 6.99%
(skew-symmetric geometry) ratio values.

IV. SEPARATION INTERFEROGRAM

This section explores the working of the split interferom-
eter when it is operated vertically. The Mathematica code
numerically implementing the governing equations is avail-
able in the Supplemental Material, part c [20].

A. Measurement equations

As shown in Fig. 1, by using a vertically operating split-
crystal interferometer, the interference can be modulated by
varying either the skewness from 2�M to 2�M + cos(�B)s,
where s is a displacement parallel to the incident beam, or the
crystals’ misalignment θ in the reflection plane (the mutual
rotation angle about the y axis of the split crystals, as shown
in Fig. 1).
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Since the crystal separation and rotation do not affect the
(perceived) crystal strains and self-weight bending, the h�u
and �b terms of the fringe phase (5) can be disregarded.
Hence, we rewrite (5)–(7) as

�(s) = fxA′
0 + fxA′

1 + �D + huθ , (10a)

�g(s) = −m2A′
0(s) cos(�B)g

h̄2Kz
, (10b)

and

�S (s) = −2mA′
0(s) cos(ϑL )ω

h̄
. (10c)

The areas of the interferometer loops depend on the crystal
separation and are now given by

A′
0(s) = A0 + (tM + 2zM2) sin(�B)s (10d)

and

A′
1(s) = A1 + 2�z sin(�B)s. (10e)

The last term of (10a),

huθ = h(zA1 + tM1/2)θ, (10f)

was not previously accounted for. The dependence on θ of
the interferometer operation is a peculiar characteristic of
the skew-symmetric geometry [9,10]. Accordingly, when the
Bragg alignment of the split crystals is varied, interference
fringes are produced with a periodicity equal to

�θ = d

zA1 + tM1/2
.

In Eqs. (3), assuming that the incident beam satisfies the
Bragg condition on the splitter, the transferred momentum qS

is zero. Mathematically, this corresponds to redefining the q
mode as q = q′ + qS . Also, the integrals in (2a), (2b), and
(8) can be equally solved with respect to either q or q′ + qS .
Consequently, omitting the prime, we rewrite Eqs. (3) as

X1o(q + qS ) = R(q − qA + qθ ; tA)R(q − q1 + qθ ; tM1)

×T (q; tS ), (11a)

X2o(q + qS ) = T (q − qA + qθ ; tA)R(q − q2; tM2)

×R(q; tS ), (11b)

X1h(q + qS ) = T (−q + qA − qθ ; tA)R(q − q1 + qθ ; tM1)

×T (q; tS ), (11c)

X2h(q + qS ) = R(q − qA + qθ ; tA)R(q − q2; tM2)R(q; tS ),

(11d)

where qθ = θKz is the momentum associated with the rotation
angle θ of the second crystal relative to the first. Similarly,
Eqs. (4) are rewritten as (see [20])

q0 = fx(zS + tS/2),

q1(s) = − fx[tS/2 + zM1 + tM1/2 + s cos(�B)],

q2 = − fx(tS/2 + zM2 + tM2/2),

qA(s) = − fx[zT + s cos(�B)], (12)

where zT = tS/2 + zMi + tMi + zAi + tA/2 is the distance
(center to center) of the analyzer from the splitter.

By rotating the second crystal about its vertical, we can
eliminate, for instance, the deviation from the Bragg condition
of mirror 1 or the analyzer. In the second case, in Eqs. (11),

q1(s) + qθ = fx[tM1/2 + zA1 + tA/2 − s cos(�B)] + θAKz

ideal= −q2 − fxs cos(�B) + θAKz,

qA(s) + qθ = − fxs cos(�B) + θAKz, (13)

where θA is the analyzer rotation angle away from the angle
θ = fxzT /Kz compensating for the analyzer misalignment and
the overscript on the equal sign indicates the ideal geometry.
After we adjust for this compensation, the deviations from the
Bragg condition of the interferometer crystals are not affected
by the s = 0 skewness. It is important to note that the crystals’
gap needs to accommodate an optical interferometer to sense
their alignment [31,32]. Therefore, the fact that the initial
skewness does not impact the interferometer operation is a
valuable characteristic.

Once the analyzer misalignment associated with the
initial skewness has been compensated, the residual crys-
tals’ misalignments depend on only the separation of the
interferometer arms. A little separation results in fewer mis-
alignments and higher visibility. However, the sensitivity of
the gravitationally induced phase to the displacement s is
twice as much proportional to this separation, as seen in (10d).
Therefore, larger values are better. Ultimately, there is a need
to balance between small and large separations.

The phases induced by the displacement s [see (10d)] and
the rotation θ [see (10f)] can be rewritten as

fx(A′
0 − A0) = fx(tM + 2zM2) sin(�B)s

= Kz(tM + 2zM2) sin(�B)θ, (14a)

where θ = fxs/Kz is the propagation-direction change of the
neutrons impinging the analyzer, and associated with the dis-
placement s, and

huθ = h(zA1 + tM1/2)θ = Kz(tM + 2zM2) sin(�B)θ, (14b)

where we used 2h = Kz sin(�B) and neglected the geometri-
cal aberrations. Upon comparing (14a) and (14b), it becomes
evident that the second crystal displacement and rotation are
indistinguishable. Accordingly, the gravitational phase is ac-
counted for equally well by the difference in the neutron
momenta in the highest and lowest arms and the neutron
perception of the crystals’ mismatch due to its fall in the
gravitational field.

Assuming ideal geometry, if the displacement-induced
phase is compensated online by that due to the rotation angle

θ (s) = fxs

Kz
= fx sin(�B)s

2h
, (15)

the fringe phase (10a) does not change. Therefore, the grav-
itationally induced phase can be determined by measuring
the rotation θ (s) locking the interference phase to a constant
value, provided the angle measurement has been calibrated.
It is worth noting that this measurement procedure allows the
gravitationally induced phase to be determined independently
of dynamical diffraction.
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FIG. 5. Rocking curves (top left), visibility (top right), dynamical diffraction phase (bottom left), and interferograms (bottom right) of a
split-crystal interferometer set vertically. s and θA are the second crystal displacement and rotation angle away from the angle that compensates
the s = 0 deviation (perceived by the neutron) of the analyzer from the Bragg alignment. θ1 and θ2 are the perceived deviations from the Bragg
alignment of mirrors 1 and 2. RRR, TRT, RRT, and TRR indicate the sequences of reflections (R) and transmissions (T) by the splitter, mirrors,
and analyzer. The crystal thicknesses are tS = tM1 = tM2 = tA = 2 mm. The parameters used in the computations are given in Table I.

B. Dynamical diffraction

Figures 5–7 show the predicted operation of split-crystal
interferometers set vertically when displacing (bottom axis) or
rotating (top axis) the second crystal. Three cases are shown,
each with different splitter, mirror, and analyzer thicknesses
but identical geometries otherwise. For more details on the
parameters used in the computations, refer to Table I.

To minimize the perceived misalignments and maximize
the interference visibility, the separation of the interferometer
arms was set to 10 mm, i.e., zM2 = zA1 = 10 mm. Further-
more, we assumed that the analyzer misalignment associated
with the initial 2�M (s = 0) skewness was compensated.
Therefore, in Figs. 5–7, the origins of the s (bottom axis) and
θA (top axis) scales are the same.

According to (14a) and (14b), the second crystal rotation,
θA = fxs/Kz, is equivalent to the displacement s = KzθA/ fx

and vice versa. Here, the word “equivalent” means that both

cause the same Bragg mismatch and induce the same phase
shift between the interfering beams. Therefore, in Figs. 5–
7, the top axes give the deviations from the exact Bragg
alignment of the analyzer and mirror 1 (θA and θ1, respec-
tively) associated with the displacement s shown on the
bottom axis. The mismatch between mirrors 1 and 2 is also
given.

The initial skewness 2�M (s = 0) is irrelevant. In fact,
Eqs. (13) are independent of zM1 and zA2. Therefore, the
results shown in Figs. 5–7 hold for any 2�M (s = 0) value.

Different sets of crystal thickness were considered:
tS = tA = tM1 = tM2 = 2 mm (Fig. 5), tS = tA = tM1 = tM2 =
1 mm (Fig. 6), and 2tS = 2tA = tM1 = tM2 = 4 mm (Fig. 7).
In the latter case, we expected good visibility over relatively
large Bragg misalignments. Figure 6 confirms that, in this
case, the interferogram visibility is insensitive to the second
crystal separation and misalignment but also that it is small
everywhere.
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FIG. 6. Rocking curves (top left), visibility (top right), dynamical diffraction phase (bottom left), and interferograms (bottom right) of a
split-crystal interferometer set vertically. s and θA are the second crystal displacement and rotation angle away from the angle that compensates
the s = 0 deviation (perceived by the neutron) of the analyzer from the Bragg alignment. θ1 and θ2 are the perceived deviations from the
Bragg alignment of mirrors 1 and 2. RRR, TRT, RRT, and TRR indicate the sequences of reflections (R) and transmissions (T) by the
splitter, mirrors, and analyzer. The crystal thicknesses are tS = tM1 = tM2 = tA = 1 mm. The parameters used in the computations are given
in Table I.

The rocking curves are given as ratios between the fluxes
of the neutrons leaving the interferometer and the flux of the
incoming ones. Due to the interferometer’s limited angular
acceptance, the transmittances depend on the angular width
of the initial state. The larger the angular width is, the smaller
the transmittances are. The values given in Figs. 5–7 refer to
the initial state given in Table I. Since the absorption is null,
the RRT and RRR transmittances—this notation indicates the
sequences of reflections (R) and transmissions (T) by the
splitter, mirrors, and analyzer—total to a constant. Because
of the same null absorption the o- and h-state interferograms
are in counterphase.

In the absence of geometrical imperfections, the TRR and
RRT flux ratios are identical (see Figs. 5–7). This is be-
cause of the symmetries of the reflection and transmission
coefficients, and, in (11a) and (11b), qA(s) − q1(s) = q2. The

symbolic proof can be found in the Supplemental Material,
part a [20].

When the visibility is null, the complex amplitude of the
interference fringes 	n(s) crosses the zero. The reversing
of the 	n(s) sign corresponds to a π discontinuity of the
dynamical phase, as shown in Fig. 5. Also, since the o- and
h-state interferograms are constrained to be in counterphase,
zero visibility always happens simultaneously in the o and h
states.

Figures 5 and 6 indicate that visibility is maximum when
the displaced mirror is approximately aligned, and thin crys-
tals improve fringe visibility and expand the interferometer’s
working ranges. Since it is impossible to investigate this clue
analytically, we focused on a simulation sequence with in-
creasing thicknesses. The results, shown in Fig. 8, confirm
what the clue hinted at. It is worth noting that the man-
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FIG. 7. Rocking curves (top left), visibility (top right), dynamical diffraction phase (bottom left), and interferograms (bottom right) of a
split-crystal interferometer set vertically. s and θA are the second crystal displacement and rotation angle away from the angle that compensates
the s = 0 deviation (perceived by the neutron) of the analyzer from the Bragg alignment. θ1 and θ2 are the perceived deviations from the Bragg
alignment of mirrors 1 and 2. RRR, TRT, RRT, and TRR indicate the sequences of reflections (R) and transmissions (T) by the splitter, mirrors,
and analyzer. The crystal thicknesses are 2tS = tM1 = tM2 = 2tA = 4 mm. The parameters used in the computations are given in Table I.

ufacturing and operation of interferometers with 0.56- and
0.98-mm-thick crystals are reported in [33,34].

V. CONCLUSIONS

To effectively use crystal neutron interferometry in metrol-
ogy, it is necessary to understand the effects of gravity, Cori-
olis forces, crystal transmission and reflection, and geometric
imperfections on the neutron wave function. We developed a
mathematical model based on the transfer-matrix formalism.
It integrates geometry aberration, three-dimensional propaga-
tion, incoherent sources, gravity, and the Coriolis force from
first principles.

To ensure that our model and its numerical implementation
are accurate, we replicated the simulations of the COW ex-
periment found in the literature. Additionally, we assessed the
uncertainties and systematic errors caused by interferometer

deviations from geometrical perfection. Although an accurate
evaluation would require knowledge of the interferometer ge-
ometry, we did not find clues that could explain the observed
discrepancy in addition to the crystallographic imperfections
reported in [13].

The two most significant aberrations are the defocus and
nonequal thicknesses of the interferometer crystals. The first
alters the effective area of the interferometer loop. It can be
made harmless by minimizing the detector distance from the
interferometer. The second is relevant only if the mirrors’
thickness is designed differently from that of the splitter-
analyzer pair. This design causes a difference, which depends
on the tipping angle, between the perceived mirrors’ strains
and those of the splitter and analyzer pair.

We calculated the dynamical contribution to the neutron
phase and extended its approximation about a null tipping
angle to the skew-symmetric geometry. Our result aligns with
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FIG. 8. Ridgeline plot of the visibility of the separation interfero-
gram (o state) of a split-crystal interferometer operating vertically vs
the crystals’ thickness. The perceived s = 0 misalignment of the ana-
lyzer has been compensated. The parameters used in the calculations
are given in Table I.

the existing literature, with a slight difference because we
included ab initio the Coriolis force in the interferometer
model.

We investigated the vertical operation of a split-crystal
interferometer. Changing the separation of the crystals to vary
the gravity-induced phase difference eliminates uncertainties

and systematic errors caused by geometric imperfections and
self-weight strain due to gravity.

The neutrons fall through the free space between the split
crystals, causing them to appear misaligned. However, they
can be realigned by rotating them around the normal to the
reflection plane. This means that the gap between the crystals
does not impact the interference visibility, which is deter-
mined by only the thickness of the crystals and the separation
of the interferometer arms. Thinner crystals result in better
visibility.

We proved that varying the crystals’ distance is indistin-
guishable from varying their mutual alignment. Therefore,
the gravity-induced phase difference can be compensated and
measured using a feedback loop keeping the crystals aligned.
It is worth noting that this procedure eliminates any dynamical
contribution to the measurement.
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