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A B S T R A C T

Dye-sensitized solar cells (DSSCs) have recently emerged as one of the most promising new-generation photo-
voltaic devices due to their facile fabrication protocols, capacity to operate under diffuse light, and low-impact 
on the environment. However, their low power conversion efficiency (~15.2%) hinders practical applications. 
This is primarily owing to ineffective dyes, significant recombination at solid/liquid interfaces, and limitations of 
TiO2, the conventional photoanode material, especially poor light harvesting and electron transport. Moreover, 
Pt, the traditional counter electrode material, is costly and unstable due to its scarcity and low corrosion 
resistance to I3ˉ, respectively. This increases the device cost and shortens its lifespan. Inspired by this, current 
research interests have shifted their focus from traditional materials to low-cost alternatives, including metal 
oxides, metal chalcogenides and perovskites, which offer competitive photovoltaic performance. Nonetheless, 
these alternative materials exhibit relatively low electrical conductivity, which compromises device perfor-
mance. Thus, to improve device efficiency and sustainability, these materials have recently been coupled with 
highly conductive and stable carbon nanomaterials, particularly graphene-based materials. Among them, 
reduced graphene oxide (rGO) has been more appealing due to its compatibility with low-cost solution pro-
cessing. Therefore, this review highlights the recent advances in DSSC efficiency and sustainability made over the 
last five-years (2020–2024) by developing TiO2-free photoanodes and Pt-free counter electrodes, in particular, by 
introducing rGO into metal oxides, metal chalcogenides and perovskites. Challenges and future directions for 
fabricating TiO2- and Pt-free DSSCs are discussed to close the gap between emerging nanomaterials and their 
traditional counterparts, thereby setting the stage for commercialization.

1. Introduction

Almost 80% of the daily global energy consumption is generated 
from fossil fuels, such as coal, natural gas and oil [1–6]. However, these 
traditional energy sources will soon fail to meet the increasing energy 
demand due to their non-renewable nature, which is causing their rapid 
depletion. Also, the continuous usage of fossil fuels is becoming a serious 

threat to the well-being of humans and the environment since fossil fuels 
release greenhouse gases that cause undesirable effects, such as pollu-
tion, global warming, acid rain and climate change [7–12]. Conse-
quently, renewable energy sources, such as geothermal [13,14], biomass 
[15,16], wave [17,18], wind [19,20], solar [21,22] and hydropower 
[23,24], have emerged as potential solutions to resolve the global en-
ergy crisis. Among these, solar energy has gained intensive research 
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attention owing to its low-cost due to the natural abundance of free 
sunlight, and low impact on the environment due to the absence of 
carbon emissions.

Meanwhile, dye-sensitized solar cells (DSSCs), one of the new- 
generation photovoltaic devices, have recently emerged as a prom-
ising renewable energy technology for converting solar energy into 
electricity due to their simple fabrication protocols, diverse designs and 
orientation flexibility, low-costs, flexibility and capability to function 
even under diffuse light [25–30]. DSSCs were initially conceptualized in 
the late 1980s [31], and they made a considerable breakthrough in 1991 
when Grätzel and O’Regan developed a high-performing DSSC with a 
power conversion efficiency (PCE) of ~8% using a mesoporous TiO2 
photoanode, a Ru(II) pyridyl complex dye, and an Iˉ/I3ˉ redox electro-
lyte [32]. This device marked a substantial shift from traditional p-n 
junction solar cells by utilizing photoinduced electron injection into 
TiO2 photoanodes of a dye-sensitized system. Subsequent research ef-
forts have significantly increased device efficiency, stability and scal-
ability through innovations in dyes, electrodes, and electrolytes 
[33–35]. In particular, the development of Ru-based dyes, D-π-A struc-
tured organic dyes, and porphyrin dyes has been central to improving 
visible light absorption and exciton dissociation [36]. Advances in 
photoanodes, especially those made from TiO2 nanostructures, have 
been key to enhancing visible light harvesting and electron transport 
[37]. The development of high-performance counter electrodes, partic-
ularly those using Pt or carbon nanomaterials, has increased charge 
collection efficiency [38]. Innovations in liquid and quasi-solid-state 
electrolytes have enhanced the overall stability and ionic conductivity 
[39]. As a result, the PCE of the current state-of-the-art DSSCs based on 
two newly developed co-sensitizers has reached up to ~15.2% [40]. 
This, in turn, has expanded the potential applications of DSSCs to 
include indoor energy harvesting [41]. Despite these advancements, 
challenges remain in achieving competitive efficiency and long-term 
stability, prompting ongoing research and innovation in this field.

One such pressing issue arises from setbacks in one of the key DSSC 
components, the photoanode, which suffers from shortcomings of TiO2 
as the traditional semiconducting layer material. For example, TiO2 
displays poor light absorption in the visible region [42,43], which im-
pairs electron-hole pair generation. TiO2 also exhibits poor electron 
transport [43,44], which causes ineffective exciton dissociation with 
high recombination. This ultimately shortens the electron lifetime, 
resulting in state-of-the-art DSSCs with low PCEs that are ~58% of their 
first-generation counterparts (commercially available crystalline silicon 
solar cells) [45]. Additional major challenges are linked to Pt, the con-
ventional counter electrode material, which is expensive due to its 
scarcity, and has poor stability in the electrolyte medium due to its low 
resistance to corrosion from I3ˉ [46–50]. This increases the cost of DSSCs 
and shortens their lifetime.

Being motivated by this, significant research efforts have been 
recently directed towards developing potential alternatives to the 
traditional TiO2 and Pt electrode materials, including semiconducting 
metal oxides [51,52], metal chalcogenides [53,54] and perovskites [55, 
56], with competitive photovoltaic performance, excellent stability and 
low-costs. However, on their own, these materials exhibit relatively low 
electrical conductivity [57,58], which lowers device performance. This, 
in turn, necessitates the integration of these alternative materials with 
highly conductive materials to facilitate synergistic interactions that 
help in overcoming the limitations of individual materials, while also 
complementing their merits to improve device performance.

One such promising class of conductive materials is the emerging 
carbon nanomaterials family [59–62], specifically graphene and its 
derivatives, including graphene oxide (GO) and reduced GO (rGO), 
which show facile synthesis procedures and remarkable physicochem-
ical properties [63–67]. This benefits from the merits of graphene, 
including its high specific surface area, wide visible light absorption 
spectrum and high electrical conductivity [68,69]. These merits pro-
mote effective dye adsorption, enhanced photon harvesting and efficient 

electron transport with minimum recombination in DSSC photoanodes. 
Furthermore, the low charge transfer resistance and high electro-
catalytic activity of graphene-based counter electrode nanomaterials are 
beneficial for enhancing the transfer of electrons from an external circuit 
to the electrolyte for catalyzing I3ˉ reduction [70,71]. Most importantly, 
the high mechanical, thermal and chemical stabilities of graphene-based 
materials prolong the device lifespan [72,73]. On the other hand, their 
inexpensive nature owing to the inherent abundance of carbon lowers 
the device cost, and their non-toxicity allows for the fabrication of de-
vices that are safe to use.

However, despite the promising potential of graphene-based com-
posites with metal oxides, metal chalcogenides and perovskites to 
address the issues of traditional electrode materials in DSSCs, to the best 
of our knowledge, their practical application has been relatively less 
explored. Hence, this review seeks to advance the fabrication of effi-
cient, durable and low-cost DSSCs by highlighting the recent break-
throughs in TiO2-free photoanodes and Pt-free counter electrodes 
achieved during the last five-years (2020–2024), by employing the 
aforementioned graphene-based composite materials as photoanodes 
and counter electrodes. Merits, disadvantages and future research di-
rections for developing TiO2-free photoanodes and Pt-free counter 
electrodes are also discussed to provide a link-bridge for practical 
applications.

2. Graphene-based materials

Graphene, a two-dimensional semiconducting material, is made up 
of a single layer of sp2-hybridized carbon atoms with a hexagonal lattice 
structure (Fig. 1(a)). Graphene has been commonly prepared using top- 
down approaches, e.g., exfoliation [74–81], where stacked graphite 
layers are separated into few layers of graphene sheets, and bottom-up 
approaches, e.g., chemical vapour deposition (CVD) [82–91], in which 
graphene is synthesized at high temperatures from either elemental 
carbon or carbon radicals. The application of graphene in photovoltaic 
devices has been made possible by its interesting properties, such as 
excellent stability, large specific surface area, tunable zero band gap, 
broad and intense absorption spectrum, high visible region trans-
parency, and high electrical conductivity [92–98]. However, like other 
carbon-based materials, such as carbon nanotubes, nanospheres, nano-
onions and nanofibers, graphene has limitations emanating from its 
hydrophobicity, insolubility and poor dispersion in many organic sol-
vents due to its chemical inertness [99–101]. This makes graphene 
incompatible with low-cost solution processing during DSSC device 
fabrication. To overcome these drawbacks, the oxidation-reduction 
method has been recently used to prepare oxygen-functionalized de-
rivatives of graphene, i.e., GO and rGO (Fig. 1(b-c)), with better solu-
bility and dispersion than graphene.

The abundance of oxygen functional groups enhances the chemical 
reactivity of GO and renders GO with superior hydrophilicity and good 
dispersibility in many solvents, especially polar solvents, facilitating the 
compatibility of GO to low-cost solution processing [101,102]. None-
theless, the oxygen-containing functional groups disrupt the conductive 
properties of GO, making it an insulator [103], which limits its appli-
cation in DSSCs. Hence, GO is commonly reduced by removing some of 
its oxygen functional groups to prepare rGO. This restores electron 
delocalization and increases electrical conductivity. The remaining ox-
ygen functional groups in rGO play a critical role in facilitating strong 
synergistic interactions with other active materials [104,105]. This not 
only enhances the stability of the resulting composite material, but also 
improves its optoelectronic properties. However, during reduction, 
electron delocalization is partially restored, which compromises the 
optoelectronic properties of rGO. Therefore, to optimize the optoelec-
tronic properties of rGO and make them competitive to those of gra-
phene in DSSC applications, rGO has been recently doped with 
heteroatoms, such as B and N [106], as well as being incorporated into 
novel semiconducting materials, including metal oxides [107], metal 
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chalcogenides [108] and perovskites [55], to form nanocomposites, as 
discussed in the following sections.

3. Photoanode

A dye-loaded semiconducting metal oxide material is deposited on a 
transparent conducting oxide material to prepare a DSSC photoanode 
responsible for photon-to-electricity conversion [109,110]. Thus, an 
efficient photoanode material should be highly transparent to allow for 
the entrance of more light into the cell. It must also be mesoporous with 
a high specific surface area to provide numerous active sites that 
effectively adsorb dye molecules for efficient light harvesting. A highly 
conductive photoanode also promotes rapid electron transport with 
minimum recombination. A photoanode material should also be 
constituted by relatively large particles to prevent unabsorbed light from 
being transmitted through the photoanode by scattering it back to the 
dye-coated semiconductor to facilitate effective photon harvesting. 
Furthermore, the photoanode should provide proper alignment of the 
conduction band with the lowest unoccupied molecular orbital (LUMO), 
i.e., it should be well below the dye LUMO to facilitate efficient electron 
transfer [111,112]. A good photoanode should also exhibit high stability 
in the electrolyte system to prolong the device lifetime.

An assortment of wide band gap semiconducting metal oxides, such 
as TiO2 [113,114], Nb2O5 [115,116], SnO2 [117,118] and ZnO [119, 
120], have been employed over the years to fabricate DSSC photo-
anodes. Among them, TiO2 has been widely recognized as the conven-
tional semiconducting layer material owing to its ease of availability and 
non-toxicity, which make it inexpensive [121–124], as well as its 
excellent photochemical stability [125–127], which increases device 
lifetime. Additionally, the mesoporous nature of TiO2 provides the 
photoanode with a large surface area beneficial for enhancing dye 
adsorption.

Nevertheless, TiO2 exhibits a relatively low optical transmittance in 
the visible region, which limits the passage of more light into the cell. 
TiO2 also has a wide band gap (~3.2 eV), which permits the harvesting 
of ultraviolet (UV) light only, resulting in poor visible light absorption 
[128–130]. The TiO2 wide band gap also provides a large energy barrier 
at the dye/semiconductor interface. This causes poor injection of elec-
trons from the dye molecule LUMO to the TiO2 conduction band, as well 
as high recombination of photogenerated electrons with oxidized dye 
molecules and I3ˉ in the electrolyte. Thus, TiO2 has been commonly 
integrated with highly transparent materials to increase its trans-
mittance in the visible region, and medium or narrow band gap mate-
rials to reduce its band gap to extend the absorption spectrum from the 
UV to the visible region [131]. This enhances photon harvesting and 
promotes exciton generation. Medium or narrow band gap materials 
also lower the energy barrier at the dye/TiO2 interface, which promotes 
the effective dissociation of electron-hole pairs and the efficient 

injection of photogenerated electrons from the LUMO of dye molecules 
to the TiO2 conduction band with minimum recombination.

The small-sized TiO2 nanoparticles show many defects and grain 
boundaries. These allow for the transmission of unabsorbed light 
through the photoanode due to their inability to effectively scatter un-
absorbed light back to the photoanode, thereby causing poor photon 
harvesting. The numerous defects and grain boundaries also cause TiO2 
to have poor electron transfer properties with high recombination rates 
[132]. As a consequence, a light-scattering layer has been commonly 
prepared by introducing larger TiO2 particles with dimensions compa-
rable to the wavelength of visible light [133]. This prevents unabsorbed 
light from passing through the photoanode by reflecting it to the pho-
toanode itself to enhance light harvesting for effective exciton genera-
tion to occur. TiO2 has also been integrated with highly conductive 
materials, which provide additional electron transport pathways bene-
ficial for improving electron transfer with low recombination losses 
[134]. In addition, post-synthesis treatments of TiO2, e.g., with TiCl4 
solution [135], and thermal annealing [136], have also been employed 
to repair the surface defects, which, in turn, reduces the number of 
charge carrier scattering centres, resulting in rapid electron transport 
with minimum recombination.

The mesoporous TiO2 film also permits direct contact between the 
electrolyte and bare sites of the transparent conducting electrode, 
resulting in recombination between I3ˉ in the electrolyte and photo-
generated electrons on the transparent conducting electrode [137]. This 
shortens the electron lifetime, leading to poor photovoltaic perfor-
mance. As a result, a compact layer has been commonly deposited at the 
transparent conducting electrode/mesoporous TiO2 interface to prevent 
direct contact between the electrolyte and the transparent conducting 
electrode to suppress recombination [138]. A compact layer also assists 
by smoothing out the transparent conducting electrode/TiO2 interface, 
which reduces issues with short-circuits and leakage current; hence, 
increasing device performance.

Despite the aforementioned efforts to modify the photovoltaic per-
formance of TiO2, the PCE of state-of-the-art TiO2-based DSSCs 
(~15.2%) [40] remains lower than that of commercialized 
first-generation (crystalline silicon) solar cells (>26%) [45]. As a result, 
recent research interests have shifted from TiO2 to concentrate on 
emerging low-cost TiO2-free semiconducting layer materials, such as 
metal oxides [139–141], metal chalcogenides [142,143] and perovskites 
[144–146], with competitive photovoltaic performance and stability. 
However, in their pristine form, these alternative materials tend to 
aggregate, resulting in small surface areas with poor dye adsorption, 
ineffective light harvesting and low electrical conductivity. These sem-
iconducting materials also have drawbacks due to their wide band gap. 
On the one hand, wide band gap causes poor visible light absorption by 
permitting the absorption of UV light only. On the other hand, wide 
band gap provides a large energy barrier that inhibits the effective 

Fig. 1. Molecular structure of (a) graphene, (b) GO and (c) rGO.
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injection of photogenerated electrons from dye molecules to the semi-
conducting material. This, in addition to the low charge transfer rate of 
these semiconducting materials, causes poor exciton dissociation and 
high recombination of electrons with I3ˉ in the electrolyte and oxidized 
dye molecules, which shortens the electron lifespan, resulting in poor 
device performance.

Inspired by this, these semiconducting materials have recently been 
coupled with highly conductive carbon nanomaterials, particularly rGO, 
with a large specific surface area [147] to supply more active sites for 
effective dye loading to improve visible light absorption and 
electron-hole pair generation. This also takes advantage of the residual 
oxygen functionalized groups in rGO, which enable it to strongly bind 
with active materials to enhance charge transfer and device stability 
[104,105]. The introduction of rGO, a narrow band gap material, also 
helps to lower the band gap of the semiconducting material. This, in 
turn, widens the absorption spectrum to the visible region to improve 
light harvesting and electron-hole pair generation. Simultaneously, the 
energy barrier is lowered to enhance exciton dissociation and electron 
transfer with low recombination losses.

Similar to the above-mentioned pristine semiconducting materials, 
pristine rGO nanosheets tend to aggregate and restack [97,148], which 
reduces the photoanode surface area, resulting in poor dye loading and 
low photon absorption. This also compromises electron transport, giving 
rise to high recombination rates, and hence low short-circuit current 
density (Jsc) and PCE. Interestingly, the preparation of rGO-based 
composites with the aforementioned semiconductor materials helps to 
prevent the aggregation of the individual constituents. Therefore, it 
minimizes the loss of specific surface area, enhances dye loading and 
visible light absorption, and reduces interfacial charge transfer resis-
tance. This not only helps to overcome the setbacks of the individual 
constituents, but also those of TiO2, the traditional photoanode, as dis-
cussed in Section 4.

4. Reduced graphene oxide-based TiO2-free photoanodes

The recent applications of rGO-based composites with semi-
conducting metal oxides, metal chalcogenides and perovskites, as 
promising alternatives to TiO2 photoanodes in DSSCs, have been dis-
cussed in Sections 4.1–4.3 and summarized in Tables 1–3, respectively.

4.1. Reduced graphene oxide/metal oxide nanocomposites

Recently, rGO has been introduced into metal oxides, such as CuO, 
CdO, SnO2, CeO2 [149], Bi2O3 [150], ZnO [149,151–153], ZnO-Fe2O3 
nanocomposites [154] and Sr-doped ZnO (Sr-ZnO) [155]. Among other 
advantages, the rGO sheets provide better energy band alignment at the 
dye/photoanode interface, which facilitates the fast transfer of photo-
generated electrons from the LUMO of dye molecules to the metal oxide 
conduction band with minimum recombination. This increases the 
electrical conductivity of the photoanode, e.g., as demonstrated by the 
significant increase in the slope of the current-voltage (I-V) curves of 
rGO-based composites (Fig. 2(a)), which ultimately increases the Jsc 
(Fig. 2(b)), and hence improves the DSSC performance [150]. For 
example, DSSCs based on rGO/metal oxide composite photoanodes have 
recently displayed comparable photovoltaic performance to their 
traditional TiO2-based counterparts, e.g., by reaching up to ~87% of the 
PCE of TiO2 reference devices [149]. Also, the rGO/metal oxide-based 
DSSCs have surpassed the PCE of pristine metal oxide devices, e.g., by 
~564% [150] and ~133% [153], demonstrating the significant role 
played by rGO towards improving device performance. Thus, rGO/metal 
oxide composites can be used in future research as promising alterna-
tives to not only the conventional TiO2 photoanodes, but also to their 
pristine metal oxide counterparts.

4.2. Reduced graphene oxide/metal chalcogenide nanocomposites

Metal chalcogenides, such as CuS [156], MoS2 [157] and WS2 [158], 
have also been integrated with rGO, and used as potential alternatives to 
the traditional TiO2 photoanodes in DSSCs. Among other merits, the 
mesoporous nature of the resulting materials, revealed by the type IV N2 
adsorption-desorption isotherms with a characteristic H3 hysteresis loop 
(Fig. 3(a)) [157], provides a large photoanode surface area, which al-
lows for optimum distribution of dye molecules on the semiconducting 
layer with minimum agglomeration. This, in addition to the large spe-
cific surface area of rGO, improves dye loading and increases visible 
light absorption for effective photogeneration of electrons to occur. At 
the same time, a significant reduction in pore diameter upon the for-
mation of the composites was revealed by the Barrett-Joyner-Halenda 
(BJH) pore size distribution curves (Fig. 3(b)) [157]. This helps to 

Table 1 
Photovoltaic parameters of DSSCs using metal oxide and rGO/metal oxide nanocomposite photoanodes. Voc and FF represent the open-circuit voltage and the fill factor 
of the solar devices, respectively.

Semiconducting layer material Dye Redox couple Voc (V) Jsc (mA cm− 2) FF PCE (%) Ref.

CuO
N719 Iˉ/I3ˉ 0.71 3.63 0.67 1.76

[149]
rGO/CuO 0.72 4.62 0.78 2.65
CdO N719 Iˉ/I3ˉ 0.72 4.86 0.72 2.64 [149]
rGO/CdO 0.74 6.48 0.68 3.53
SnO2 N719 Iˉ/I3ˉ 0.61 6.62 0.47 1.90

[149]rGO/SnO2 0.53 12.20 0.46 3.01
CeO2 N719 Iˉ/I3ˉ 0.50 6.90 0.50 1.74

[149]rGO/CeO2 0.52 8.60 0.45 2.15
Bi2O3

Eosin B Iˉ/I3ˉ

0.53 6.00 0.21 0.42

[150]rGO/Bi2O3 0.48 9.80 0.44 1.68
B-rGO/Bi2O3 0.59 10.00 0.50 2.79
N-rGO/Bi2O3 0.55 9.20 0.47 1.97
ZnO

N719 Iˉ/I3ˉ 0.74 6.77 0.69 3.50
[149]rGO/ZnO 0.73 8.52 0.70 4.44

ZnO
N719 Iˉ/I3ˉ 0.43 0.20 0.38 0.33

[151]rGO/ZnO 0.46 0.24 0.52 0.57
ZnO N719 Iˉ/I3ˉ 0.58 1.18 0.66 0.45 [152]
rGO/ZnO 0.54 1.60 0.56 0.50
ZnO N719 Iˉ/I3ˉ 0.35 2.33 0.56 0.46 [153]
rGO/ZnO 0.39 4.65 0.59 1.07
rGO/ZnO

N719 Iˉ/I3ˉ 0.20 2.68 0.29 0.16
[154]rGO/ZnO-Fe2O3 0.60 1.75 0.40 0.42

ZnO
N719 Iˉ/I3ˉ

0.58 6.40 0.51 1.90
[155]rGO/ZnO 0.73 8.15 0.60 3.58

rGO/Sr-ZnO 0.70 18.40 0.61 7.90
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suppress the recombination of electrons on the transparent electrode 
and I3ˉ in the electrolyte by reducing the amount of electrolyte that 
penetrates through the photoanode to reach the transparent electrode. 
Low charge carrier recombination favourably results in high electron 
density, which increases the Jsc, and causes a shift in the Fermi level, 
which increases the open-circuit voltage (Voc), thereby increasing the 
PCE. For example, the rGO/WS2 composite photoanode-based DSSCs 
displayed an optimum PCE of ~10%, which surpassed that of pristine 
WS2- and rGO-based devices by ~129 and 357%, respectively [158], 
highlighting the superiority of rGO/metal chalcogenide composites.

The excellent chemical, mechanical and thermal stability of rGO is 
also beneficial for complementing the high stability of metal chalco-
genides. This helps to increase the device lifetime, e.g., as demonstrated 
by the ability of rGO/CuS-based DSSCs to retain ~95% of the initial PCE 
after exposure to light illumination for 21 days [156]. This out-
performed the devices based on pristine rGO and CuS photoanodes, 
which maintained ~85 and 88% of their original PCEs, respectively, 

under the same conditions. In a similar study, rGO/MoS2-based DSSCs 
managed to maintain above 95% of the original PCE after a relatively 
longer period of 60 days (Fig. 4) [157]. Thus, the introduction of rGO 
into metal chalcogenides to form rGO/metal chalcogenide composites 
not only increases the device efficiency, but also enhances the device 
stability, both of which are critical for practical and commercial 
applications.

4.3. Reduced graphene oxide/perovskite nanocomposites

Perovskite metal oxide semiconductor materials, such as ZnTiO3 
[159], SrTiO3 [160], BaTiO3 [161], BaSnO3 [162] and Sr0.7Sm0.3Fe0.6-

Co0.4O3 (SSFC) [163], have also been recently employed in combination 
with rGO, as promising alternatives for TiO2 photoanodes in DSSCs. In 
addition to other advantages, this helps to prevent the aggregation of 
pristine perovskite oxide nanoparticles (Fig. 5(a)) and the restacking of 
wrinkled rGO sheets (Fig. 5(b)) [163], which would otherwise reduce 

Table 2 
Photovoltaic parameters of DSSCs using metal chalcogenide and rGO/metal chalcogenide nanocomposite photoanodes.

Semiconducting layer material Dye Redox couple Voc (V) Jsc (mA cm− 2) FF PCE (%) Ref.

CuS
N719 Iˉ/I3ˉ

0.64 11.10 0.56 4.27
[156]rGO 0.48 9.20 0.48 2.08

rGO/CuS 0.71 16.00 0.70 7.81
MoS2

N719 Iˉ/I3ˉ
0.67 9.32 0.52 3.36

[157]rGO 0.58 6.94 0.46 1.23
rGO/MoS2 0.82 15.82 0.71 8.92
WS2

N719 Iˉ/I3ˉ
0.68 11.80 0.62 4.20

[158]rGO 0.59 9.20 0.52 2.10
rGO/WS2 0.79 18.60 0.66 9.60

Table 3 
Photovoltaic parameters of DSSCs using perovskite and rGO/perovskite nanocomposite photoanodes.

Semiconducting layer material Dye Redox couple Voc (V) Jsc (mA cm− 2) FF PCE (%) Ref.

ZnTiO3 N719 Iˉ/I3ˉ 0.66 1.90 0.34 0.43
[159]rGO/ZnTiO3 0.65 4.27 0.40 1.11

SrTiO3 N719 Iˉ/I3ˉ 0.76 6.98 0.49 2.59
[160]rGO/SrTiO3 0.77 11.16 0.63 5.42

BaTiO3 N719 Iˉ/I3ˉ 0.73 7.50 0.56 3.07 [161]
rGO/BaTiO3 0.73 15.02 0.54 5.92
BaSnO3 N719 Iˉ/I3ˉ 0.67 11.01 0.52 3.82 [162]
rGO/BaSnO3 0.70 13.96 0.57 5.59
rGO

Eosin B Iˉ/I3ˉ 0.62 8.17 0.51 3.98
[163]rGO/SSFC 0.74 13.15 0.59 7.01

Fig. 2. (a) Current-voltage characteristics, and (b) photocurrent density-voltage curves of pristine Bi2O3 and rGO/Bi2O3-based composites. Adapted under a Creative 
Commons license [150], Copyright (2022), open access.
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the specific surface area of the photoanode, compromise dye loading and 
impede electron transport. As a result, the prepared nanocomposites 
were made up of a homogeneous dispersion of perovskite oxide nano-
particles on the rGO nanosheets (Fig. 5(c)) [163], which allowed for the 
provision of numerous active sites for not only improving the adsorption 
of dye molecules, but also for enhancing electron transport on the 
rGO/perovskite oxide nanocomposite surface.

When compared to pristine perovskite oxides, the superior dye- 
loading capacity of rGO/perovskite oxide composites is demonstrated 
in Fig. 6(a) by the higher absorbance of N719 dye molecules desorbed 
from the surface of rGO/BaTiO3 composites [161]. This indicates that 
the rGO/BaTiO3 composites initially adsorb more dye than pristine 
BaTiO3 before desorption. Effective dye loading enhances light har-
vesting, which, in turn, improves exciton generation. This, in addition to 
the conductive nature of rGO, ensures effective exciton dissociation with 
minimum recombination, as revealed by the decrease in photo-
luminescence (PL) intensity (Fig. 6(b)) [161], thereby improving device 
performance. For example, DSSCs based on rGO/perovskite oxide 
composite photoanodes have managed to exceed the PCE of the pristine 
rGO, e.g., by ~71% [163], and pristine perovskite oxides, e.g., by 
~109% [160]. Therefore, rGO has significant potential to improve the 

performance of perovskite oxide photoanode materials in DSSCs.

5. Counter electrode

A conductive and catalytic material is deposited on a transparent 
conducting oxide material to prepare a DSSC counter electrode 
responsible for transferring electrons from an external circuit to the 
electrolyte to speed up the reduction of I3ˉ to Iˉ for the subsequent 
regeneration of dye molecules [164–167]. Thus, a good counter elec-
trode material should be highly conductive to enable the rapid transfer 
of electrons to the electrolyte, and highly electrocatalytic to speed up I3ˉ 
reduction. An efficient counter electrode should also be highly reflective 
to prevent the loss of unabsorbed light transmitted through the photo-
anode by reflecting it to the sensitizer (dye molecules) to promote 
effective photon harvesting. Additionally, the counter electrode should 
be highly stable in the electrolyte system to prolong the device lifespan.

Meanwhile, Pt thin films deposited on a transparent conducting 
electrode have been widely used as the conventional counter electrode 
due to their high reflectance, low charge transfer resistance, high elec-
trical conductivity and high electrocatalytic activity [168–171]. None-
theless, Pt suffers from high-costs owing to its scarcity, and instability 
issues due to its poor corrosion resistance to I3ˉ in the redox couple 
[172–181]. Although considerable research efforts have been made to 
improve device performance and stability, using approaches which 
include fabricating Pt-based nanocomposites with competitive electrical 
conductivity and electrocatalytic activity [182–184], the PCE and sta-
bility of Pt-based DSSCs have remained low. Therefore, the development 
of highly stable and low-cost Pt-free counter electrode materials with 
comparable electrical conductivity and electrocatalytic activity has 
recently emerged as one of the most promising strategies to overcome 
the aforementioned limitations.

Being motivated by this, numerous promising Pt-free counter elec-
trode materials, such as metal oxides [185–187], metal chalcogenides 
[188–190] and perovskites [172,191], have been recently explored. This 
is primarily owing to their ability to facilitate electron hopping trans-
port, which renders them with good electrocatalytic activity towards I3ˉ 
reduction, in addition to their low-costs and excellent stability [192]. 
These alternative materials also have hierarchical structures with 
nanopores that allow for the exposure of more surface-active sites for 
electrocatalytic reactions, which speeds up the reduction of I3ˉ. How-
ever, when compared to the conventional Pt counter electrode, the 
semiconducting nature of these alternative materials makes them have 
relatively low electrical conductivity and catalytic reduction 

Fig. 3. (a) N2 adsorption-desorption analysis, and (b) pore size distribution of pristine MoS2 and the rGO/MoS2 composite. Adapted from [157], Copyright (2020), 
with permission from Elsevier.

Fig. 4. Stability test of rGO-, MoS2- and rGO/MoS2-based DSSCs. Adapted from 
[157], Copyright (2020), with permission from Elsevier.

E. Muchuweni et al.                                                                                                                                                                                                                            Next Materials 6 (2025) 100477 

6 



performance [174], both of which impair device performance. Thus, 
these alternative catalytic materials have been recently integrated with 
highly conductive and stable carbon nanomaterials, especially 
graphene-based materials, in particular, rGO, which is compatible with 
low-cost solution synthesis [193,194], to produce a significant 
enhancement in photovoltaic performance as discussed in Section 6.

6. Reduced graphene oxide-based Pt-free counter electrodes

The recent applications of rGO-based composites with semi-
conducting metal oxides, metal chalcogenides and perovskites, as 

potential replacements for Pt counter electrodes in DSSCs, have been 
discussed in Sections 6.1–6.3 and summarized in Tables 4–6, 
respectively.

6.1. Reduced graphene oxide/metal oxide nanocomposites

Recently, rGO has been introduced into various metal oxide-based 
counter electrodes, such as Co3O4 [195], Fe3O4 [192], α-Fe2O3 [196], 
MnO2/NiO/CuO [197] and Cu2ZnNiSe4/WO3 [198]. Among several 
advantages, this enables the large specific surface area and residual 
oxygen functionalized groups in rGO to support the uniform dispersion 

Fig. 5. Field-emission scanning electron micrographs of (a) SSFC, (b) rGO, and (c) rGO/SSFC. Adapted under a Creative Commons license [163], Copyright (2023), 
open access.

Fig. 6. (a) Absorption spectra of N719 dye molecules desorbed from the surface of pristine BaTiO3 and rGO/BaTiO3 composites, and (b) PL spectra of corresponding 
materials. Adapted from [161], Copyright (2024), with permission from Elsevier.
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of metal oxide nanoparticles possibly through chemical bonds. This re-
sults in the even distribution of catalytic metal oxide nanoparticles on 
the surface of conductive rGO sheets. For instance, the integration of 
spherically-shaped and agglomerated α-Fe2O3 nanoparticles of diameter 
20–50 nm (Fig. 7(a)) with wrinkled and folded rGO sheets (Fig. 7(b)) led 
to the formation of evenly decorated α-Fe2O3 nanoparticles on the sur-
face of the rGO sheets (Fig. 7(c)) [196]. This demonstrates the presence 
of a strong interaction between rGO sheets and metal oxide nano-
particles, which is beneficial for the efficient collection and transfer of 
photogenerated electrons. Moreover, the resulting rGO/α-Fe2O3 com-
posite film surface (Fig. 7(c)) exhibited a rough surface with numerous 
pores that are desirable for providing a large specific surface area with 
abundant oxidation sites for rapid I3ˉ reduction. Therefore, in the 
rGO/metal oxide composite counter electrodes, the rGO sheets play a 
critical role by providing high-speed pathways for rapid electron 
transfer, while at the same time, the multilayer metal oxide 

nanoparticles on the rGO sheet surface provide numerous catalytically 
active sites for effective I3ˉ reduction. Thus, the synergistic effects be-
tween the high electrocatalytic activity of metal oxides and the high 
electrical conductivity of rGO have the potential to improve the per-
formance of Pt-free counter electrodes to compete with their Pt-based 
counterparts.

For example, DSSCs based on novel and low-cost rGO/metal oxide 
composite counter electrodes have recently exhibited comparable 
photovoltaic performance to those based on the traditional Pt counter 
electrode, e.g., reaching up to ~97% [195], ~93% [197], and ~88% 
[196] of the PCE of Pt-based reference devices. When compared to the 
rGO-based devices, the relatively high PCE of Pt reference devices can be 
ascribed to the superior electrical conductivity and electrocatalytic ac-
tivity of Pt. The relatively low PCE of rGO-based devices can also be 
attributed to the poor reflectance of rGO-based counter electrodes. Poor 
reflectance prevents the reflection of unabsorbed incident light back to 
the photoanode. This contrasts with Pt, which has high reflectivity and 
facilitates the maximum utilization of unabsorbed incident light by 
reflecting it to the photoanode for electron-hole pair generation. Inter-
estingly, the rGO/metal oxide-based devices outperformed their pristine 
metal oxide counterparts, e.g., by ~714% [195], and their pristine 
rGO-based DSSCs, e.g., by ~99% [196], demonstrating the critical role 
played by nanocompositing in improving device performance.

6.2. Reduced graphene oxide/metal chalcogenide nanocomposites

In recent years, rGO has been incorporated into metal chalcogenide 
counter electrodes, including selenides, e.g., NiSe2 [199,200] and 
Cu2ZnNiSe4 [198]; phosphides, e.g., Ni2P5 and Ni12P5 [201]; sulfides, e. 
g., MoS2 [202–204], NiS2 [205], CoNi2S4 [206,207] and FeNi2S4 [208]. 
The successful formation of rGO/metal chalcogenide composites was 
confirmed by the appearance of characteristic diffraction peaks of both 
rGO and metal chalcogenides, e.g., NiS2, in the XRD pattern of the 
composite (Fig. 8(a)) [205]. The presence of rGO in the composites was 
also confirmed by the appearance of D- and G-bands on the Raman 
spectra of the composites, e.g., rGO/NiS2 (Fig. 8(b)). The D-band is 
associated with the presence of defects or disordered layers, while the 
G-band is ascribed to the presence of an ordered graphitic sp2 carbon 
matrix. While the difference in the ID/IG ratio between the composite 
(1.07) and pristine rGO (1.04) may seem small and could fall within the 
error margin, it suggests the introduction of structural defects that 
enhance coupling between the conductive rGO sheets and catalytic 
metal chalcogenide nanoparticles, potentially providing more active 
sites for I3ˉ reduction.

The rGO sheets also form highly conductive networks that connect 

Table 4 
Photovoltaic parameters of DSSCs using metal oxide and rGO/metal oxide 
nanocomposite counter electrodes.

Counter 
electrode 
material

Dye
Redox 
couple

Voc 

(V)
Jsc (mA 
cm− 2) FF

PCE 
(%) Ref.

Co3O4

N719 Iˉ/I3ˉ
0.42 8.30 0.19 0.87

[195]rGO 0.71 16.02 0.26 3.05
rGO/Co3O4 0.78 15.92 0.57 7.08
rGO/Fe3O4 N719 Iˉ/I3ˉ 0.72 5.18 0.59 2.20 [192]
α-Fe2O3

N3 Iˉ/I3ˉ
0.64 13.30 0.55 4.69

[196]rGO 0.56 12.47 0.45 3.08
rGO/α-Fe2O3 0.65 15.43 0.61 6.12
rGO/MnO2/ 
NiO/CuO

N719 Iˉ/I3ˉ 0.75 13.46 0.76 7.67 [197]

rGO/ 
Cu2ZnNiSe4/ 
WO3

N719 Iˉ/I3ˉ 0.88 24.70 0.56 12.16 [198]

Table 5 
Photovoltaic parameters of DSSCs using metal chalcogenide and rGO/metal 
chalcogenide nanocomposite counter electrodes.

Counter 
electrode 
material

Dye
Redox 
couple

Voc 

(V)
Jsc (mA 
cm− 2) FF

PCE 
(%) Ref.

NiSe2 N719 Iˉ/I3ˉ 0.62 12.20 0.50 6.04 [199]
rGO/NiSe2 0.80 20.10 0.76 10.60
Ni0.85Se

N719 Iˉ/I3ˉ
0.74 15.88 0.66 7.76

[200]rGO 0.71 6.88 0.59 2.88
rGO/NiSe2 0.77 16.33 0.71 8.93
Cu2ZnNiSe4

N719 Iˉ/I3ˉ
0.68 17.50 0.33 3.88

[198]rGO/ 
Cu2ZnNiSe4

0.86 21.21 0.48 8.75

rGO/Ni2P5 N719 Iˉ/I3ˉ 0.70 16.94 0.60 7.02 [201]
rGO/Ni12P5 0.70 19.55 0.60 8.19
rGO

N719 Iˉ/I3ˉ 0.62 6.42 0.57 2.25
[202]rGO/MoS2 0.72 6.91 0.64 3.19

MoS2

N719 Iˉ/I3ˉ
0.72 13.60 0.51 5.00

[203]rGO 0.73 13.90 0.52 5.20
rGO/MoS2 0.71 14.20 0.62 6.30
MoS2

N719 Iˉ/I3ˉ

0.73 4.52 0.61 2.01

[204]rGO/MoS2 0.74 7.80 0.68 3.92
rGO/N-GQD/ 
MoS2

0.76 8.62 0.70 4.65

rGO
N719 Iˉ/I3ˉ 0.68 5.76 0.42 1.66

[205]rGO/NiS2 0.67 9.02 0.52 3.16
CoNi2S4

N719 Iˉ/I3ˉ
0.61 13.14 0.72 5.78

[206]rGO 0.55 10.68 0.58 3.44
rGO/CoNi2S4 0.67 16.34 0.84 9.22
CoNi2S4 N719 Iˉ/I3ˉ 0.62 8.41 0.66 3.45 [207]
rGO/CoNi2S4 0.88 21.96 0.85 10.21
FeNi2S4 N719 Iˉ/I3ˉ 0.60 8.01 0.63 4.87

[208]rGO/FeNi2S4 0.87 20.04 0.84 9.98

Table 6 
Photovoltaic parameters of DSSCs using perovskite and rGO/perovskite nano-
composite counter electrodes.

Counter 
electrode 
material

Dye
Redox 
couple

Voc 

(V)
Jsc (mA 
cm− 2) FF

PCE 
(%) Ref.

rGO/ 
La2CrFeW6/ 
SO4

2-

N719 Iˉ/I3ˉ

0.65 22.00 0.53 7.59

[191]

rGO/ 
La2CrFeW6/ 
CO(NH2)2

0.67 22.40 0.56 8.40

rGO/ 
La2CrFeW6/ 
CdSe

0.68 21.80 0.62 9.20

rGO/ 
La2CrFeW6/ 
C6H10S3

0.68 26.10 0.59 10.40

SSFC
Eosin 

B
Iˉ/I3ˉ

0.73 12.44 0.40 4.06

[209]
rGO 0.64 10.38 0.49 3.29
rGO/SSFC 0.81 16.04 0.66 5.94
N-rGO/SSFC 0.88 18.63 0.69 6.64
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the metal chalcogenide nanoparticles and provide additional electron 
transport pathways. This reduces the charge transfer resistance (Rct) at 
the counter electrode/electrolyte interface, e.g., as shown in the Nyquist 
plots from electrochemical impedance spectroscopy (EIS) analysis 
(Fig. 9(a)) [201], by the smaller diameter of the semicircle in the 
high-frequency region. This, in turn, facilitates the rapid transfer of 
electrons for catalyzing I3ˉ reduction. Thus, when compared to Pt (0.83 
Ω), the smaller Rct (0.79 Ω) observed for the rGO/Ni12P5 composite in-
dicates an increased electrocatalytic ability for I3ˉ reduction due to the 
rapid charge-transfer process. Also, since the intercept of the semicircle 
in the high-frequency region with the real axis is numerically equal to 
the series resistance (Rs), largely affected by film adhesion to the sub-
strate; the smaller Rs (11.56 Ω) of rGO/Ni12P5 than that of Pt (12.13 Ω) 
might have originated from the strong adhesion of the composite film to 
the substrate.

The electrocatalytic activity of the counter electrode materials for I3ˉ 
reduction has been evaluated using cyclic voltammetry (CV), and 
compared with the Pt reference curve, consisting of two pairs of redox 
peaks. In Fig. 9(b) [201], the redox peaks at a relatively high potential 
correspond to the oxidation and reduction peaks of I3ˉ/I2, while those at 
a relatively low potential correspond to the oxidation and reduction 
peaks of Iˉ/I3ˉ. Since electrons from the external circuit play a prominent 
role in reducing I3ˉ to Iˉ during an electrochemical process, the redox 
peaks at a relatively low potential represent the electrocatalytic capa-
bilities of the counter electrode. Also, since the magnitude of the peak 
current density (Jp) and peak-to-peak separation potential (ΔEpp) are 
correlated to the capacity of the counter electrode to transfer electrons 
for reducing I3ˉ species and the reversibility of the redox reaction, 
respectively, the higher Jp and smaller ΔEpp observed for rGO/Ni12P5 
indicate its faster reduction reaction kinetics and better electrochemical 

Fig. 7. Field-emission scanning electron micrographs of (a) α-Fe2O3, (b) rGO and (c) rGO/α-Fe2O3 composites. Adapted under a Creative Commons license [196], 
Copyright (2022), open access.

Fig. 8. (a) XRD diffractograms and (b) Raman spectra of pristine rGO and rGO/NiS2 composites. Adapted from [205], Copyright (2023), with permission 
from Elsevier.
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reversibility than those for Pt and rGO/Ni2P5. Therefore, the rGO/Ni12P5 
composites exhibited outstanding electrocatalytic activity and faster 
response rates than those of Pt and rGO/Ni2P5. In addition, the 
appearance of a larger integral area on the CV curve of rGO/Ni12P5 
composites compared to those of Pt and rGO/Ni2P5 demonstrates the 
potential of the rGO backbone to induce additional electrochemical 
processes, which ultimately enhance the electrochemical capacity of the 
Ni12P5 counter electrode. Thus, the competitive electrocatalytic activity 
of rGO/metal chalcogenide composites could make them effective al-
ternatives to Pt counter electrodes in future research.

The electrocatalytic activity for I3ˉ reduction has also been evaluated 
from the Tafel polarization curves by determining the exchange current 
density (J0) in the Tafel region, from the intersection of the tangent of 
the cathodic branch and the equilibrium potential line (Fig. 9(c)), ac-
cording to Eq. (1) [201]: 

J
0 =

RT
nFRct

(1) 

where R is the universal gas constant, T is the absolute temperature, n is 
the number of electrons involved in the electrochemical reduction of I3ˉ, 
F is Faraday’s constant, and Rct is the charge transfer resistance. J0 is 
correlated to the rate of electron transfer between the electrode and the 
redox species, and it serves as an indicator of the electrocatalytic activity 
of a counter electrode. From Fig. 9(c), the steeper the slope of the 
cathodic branch in the Tafel zone, the greater the J0 and the higher the 
catalytic activity of a material. Hence, the rGO/Ni12P5 composite 
exhibited the largest J0 in the Tafel zone, followed by Pt and rGO/Ni2P5. 
This was consistent with EIS data, which showed a decrease in Rct in the 
order from rGO/Ni2P5 (1.65 Ω), Pt (5.42 Ω) to rGO/Ni12P5 (0.83 Ω). A 

small Rct is desirable since it enables a large number of electrons to be 
transferred through the counter electrode/electrolyte interface. There-
fore, when compared to Pt and rGO/Ni2P5 counter electrodes, the rGO/ 
Ni12P5 composite counter electrode (with smaller Rct and larger J0) 
displayed higher electrocatalytic activity, demonstrating the effective-
ness of the composites in reducing I3ˉ.

As a consequence, DSSCs based on the rGO/metal chalcogenide 
composite counter electrode have surpassed the PCE of Pt reference 
devices, e.g., by ~60% [207,208], and in some cases reached up to 
~90% [202,203] and ~97% [206] of the PCE of Pt-based control de-
vices. Moreover, the rGO/metal chalcogenide-based devices out-
performed the pristine metal chalcogenide devices, e.g., by ~196% 
[207], and pristine rGO devices, e.g., by ~168% [206]. The enhanced 
device performance can be attributed to the ability of the composite 
counter electrode to exploit both the high electrical conductivity of rGO 
and the high electrocatalytic activity of metal chalcogenides.

The introduction of highly stable rGO sheets into metal chalcogen-
ides also enhanced the long-term stability of DSSCs, e.g., as revealed by 
the ability of rGO/NiSe2- [199], rGO/MoS2- [202] and rGO/NiS2-based 
devices [205] to maintain above 95% of the original PCE after storage 
for 60, 10 and 30 days, respectively. Additionally, no noticeable changes 
in Jp and ΔEpp appeared in the CV curves of the composite after 10000 
cycles at a scan rate of 10 mV s− 1 (Fig. 10 (a)), while also the Rct showed 
only a slight increase by ~7% (Fig. 10 (b)) [206], under the same 
conditions, demonstrating the robust electrochemical stability of the 
composite counter electrode. This was consistent with similar studies 
[27,108,200,202], which reported the fabrication of rGO/metal chal-
cogenide composite counter electrodes with superior electrochemical 
stability to their individual constituents. The excellent electrochemical 

Fig. 9. (a) Nyquist plots, (b) cyclic voltammograms and (c) Tafel polarization curves of rGO/Ni2P5, rGO/Ni12P5 and Pt counter electrodes. Adapted from [201], 
Copyright (2020), with permission from American Chemical Society.
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stability of the composite electrode and long-term stability of the device 
are primarily owing to the presence of residual oxygen functionalized 
groups in rGO, which allows for the tight chemical anchoring of metal 
chalcogenide nanoparticles on the highly stable rGO sheet surface. This 
enables the rGO sheets to prevent the agglomeration and corrosion of 
counter electrode materials, while also the metal chalcogenide 

nanoparticles prevent the restacking of rGO sheets.

6.3. Reduced graphene oxide/perovskite nanocomposites

Perovskite materials, such as La2CrFeW6 [191] and SSFC [209], have 
been recently integrated with rGO, and used as counter electrode 

Fig. 10. (a) Cyclic voltammograms and (b) Nyquist plots of the rGO/CoNi2S4 composite (initial and after 10000 cycles). Adapted from [206], Copyright (2020), with 
permission from Elsevier.

Fig. 11. Transmission electron microscopy images of (a) rGO, (b) SSFC, (c) rGO/SSFC and (d) N-rGO/SSFC. Adapted under a Creative Commons license [209], 
Copyright (2023), open access.
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materials in Pt-free DSSCs. Among other merits, this enables the rGO 
sheets to help minimize perovskite nanoparticle aggregation, while at 
the same time, the perovskite nanoparticles help to prevent the 
restacking and aggregation of rGO sheets. For example, the recent 
introduction of wrinkled and folded rGO nanosheets (Fig. 11 (a)) into 
agglomerated SSFC perovskite nanoparticles of diameter ~24 nm 
(Fig. 11 (b)) led to the formation of well-dispersed and evenly decorated 
SSFC nanoparticles on the rGO (Fig. 11 (c)) and N-rGO nanosheet sur-
faces (Fig. 11 (d)) [209]. This ultimately renders the composite counter 
electrode with a larger surface area capable of enhancing the electro-
active sites for the effective reduction of I3ˉ.

Simultaneously, the rGO nanosheets provide the counter electrode 
with additional electron transport pathways, which lower the Rct, and 
hence suppress recombination, as illustrated by the pronounced 
quenching of PL intensity in Fig. 12 [209]. It is interesting to note that 
recombination suppression through compositing was beneficial to both 
components and this suggests favourable chemical interactions between 
them. This enables the fast transfer of electrons from an external circuit 
to the electrolyte, which, in turn, catalyzes the reduction of I3ˉ. The 
N-doped rGO composite is noteworthy for its relatively outstanding 
quenching performance of PL (Fig. 12 (b)). Consequently, this has led to 
the fabrication of rGO/perovskite composite-based devices with high 
PCEs, e.g., of ~7% [209] and ~10% [191], which not only out-
performed the Pt-based reference device by ~20% [209] and 39% 
[191], but also the pristine SSFC and rGO devices by ~64 and 102%, 
respectively [209]. This demonstrates the potential of rGO/perovskite 
composites for use as Pt-free counter electrode materials in future 
DSSCs.

7. Conclusions and perspectives

When compared to commercially available crystalline silicon solar 
cells with a PCE of >26%, the commercial application of DSSCs con-
tinues to be hampered by their low PCE (~15.2%) mainly due to the 
shortcomings of traditional electrode materials, i.e., TiO2 and Pt. Among 
other issues, TiO2 has a relatively low visible region transparency, which 
restricts the passage of more light into the DSSC. In addition, the wide 
band gap of TiO2 (~3.2 eV) permits only UV light absorption, and also 
provides a large energy barrier that causes poor electron transfer at the 
dye/semiconductor interface. This causes the recombination of photo-
generated electrons with oxidized dye molecules and I3ˉ in the electro-
lyte. The small-sized mesoporous TiO2 nanoparticles also have 
numerous defects and grain boundaries, which cause ineffective scat-
tering of unabsorbed light back to the photoanode, poor light absorp-
tion, and poor electron transfer with high recombination. To circumvent 

these drawbacks, TiO2 has been used in combination with transparent 
and narrow or medium band gap materials to enhance visible region 
transparency, reduce the band gap and broaden the absorption spectrum 
to the visible region. This also helps to minimize the energy barrier at the 
dye/TiO2 interface, thereby facilitating the effective dissociation of 
photogenerated charge carriers and the subsequent transfer of photo-
generated electrons with low recombination. Additionally, light- 
scattering and compact layers have been developed to ensure the 
maximum utilization of absorbed light by scattering it back to the 
photoanode, while also preventing direct contact between the electro-
lyte and the transparent electrode to suppress recombination. The 
integration of TiO2 with highly conductive nanomaterials to provide 
additional electron transport pathways, as well as the post-synthesis 
treatment of TiO2 to repair surface defects and improve electron trans-
port, have also been employed to address the setbacks of TiO2. On the 
other hand, Pt, the traditional counter electrode material, is expensive 
due to its scarcity and has poor stability due to its poor resistance to 
corrosion from I3ˉ in the electrolyte. This increases the cost of DSSCs and 
shortens their lifespan. As a result, several approaches such as elemental 
doping and developing Pt-based nanocomposites with comparable 
electrical conductivity and electrocatalytic activity, have been 
employed to improve device performance and stability.

Despite the above-mentioned efforts, the PCE and sustainability of 
TiO2- and Pt-based DSSCs have continued to be low. As a result, this has 
necessitated the development of TiO2- and Pt-free semiconducting ma-
terials, such as metal oxides, metal chalcogenides and perovskites, with 
comparable photovoltaic performance and high stability. However, on 
their own, these semiconducting materials tend to aggregate, giving rise 
to relatively low electrical conductivity and poor electrocatalytic ac-
tivity, which reduces device performance. Therefore, these semi-
conducting materials have been recently integrated with highly 
conductive and sustainable carbon-based materials, particularly rGO, 
which is dispersible and compatible with low-cost solution synthesis. 
This also benefits from the advantages of rGO, such as its large specific 
surface area for more dye adsorption; wide and intense visible region 
absorption spectrum for more light absorption; high electrical conduc-
tivity for rapid electron transport with low recombination; high elec-
trocatalytic activity for speeding up I3ˉ reduction; excellent stability for 
prolonging device lifespan; and low-costs for reducing device cost.

From the reviewed recent studies, the use of rGO-based composites 
in devices based on the Iˉ/I3ˉ redox couple and N719 dye has led to the 
fabrication of TiO2-free DSSCs with an optimum PCE of ~10%, as well as 
Pt-free devices with a best PCE of ~12%, i.e., reaching up to ~66 and 
80% of the PCE of current state-of-the-art DSSCs based on TiO2 and Pt 
electrodes. Hence, the continuous optimization of parameters in future 

Fig. 12. PL spectra of (a) SSFC, and (b) GO, rGO, rGO/SSFC and N-rGO/SSFC. Adapted under a Creative Commons license [209], Copyright (2023), open access.
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research, through approaches such as developing novel carbon-based 
nanocomposites, while also avoiding the dependence on scarce and 
costly traditional materials, has the potential to bridge the gap between 
emerging and traditional nanomaterials. This, if done, can conceivably 
lead to the development of next-generation DSSCs with a capacity to 
surpass the current optimum DSSC PCE (~15.2%) and approach the 
performance of crystalline silicon solar cells. This ultimately opens up 
the avenues for the commercialization of low-cost, efficient and sus-
tainable devices. Therefore, this review has highlighted the recent 
progress in DSSC performance and sustainability achieved over the last 
five-year period (2020–2024) by fabricating TiO2- and Pt-free elec-
trodes, through incorporating rGO into semiconducting metal oxides, 
metal chalcogenides and perovskites. This is envisaged to contribute by 
helping to alleviate the current global issues, including the increasing 
energy demand, depletion of traditional energy sources, environmental 
pollution, global warming and climate change, through promoting the 
use of solar energy, a renewable energy source, which is abundant in 
nature, cost-effective and environmentally friendly.
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