
18 January 2025

ISTITUTO NAZIONALE DI RICERCA METROLOGICA
Repository Istituzionale

Anomalous Radiative Transfer in Heterogeneous Media / Tommasi, Federico; Pattelli, Lorenzo; Cavalieri,
Stefano; Fini, Lorenzo; Paolucci, Michela; Pini, Ernesto; Sassaroli, Angelo; Martelli, Fabrizio. - In:
ADVANCED THEORY AND SIMULATIONS. - ISSN 2513-0390. - 7:10(2024). [10.1002/adts.202400182]

Original

Anomalous Radiative Transfer in Heterogeneous Media

Publisher:

Published
DOI:10.1002/adts.202400182

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic
description in the repository

Availability:
This version is available at: 11696/82459 since: 2024-12-19T08:57:15Z

John Wiley and Sons Inc



RESEARCH ARTICLE
www.advtheorysimul.com

Anomalous Radiative Transfer in Heterogeneous Media

Federico Tommasi, Lorenzo Pattelli,* Stefano Cavalieri, Lorenzo Fini, Michela Paolucci,
Ernesto Pini, Angelo Sassaroli, and Fabrizio Martelli*

Monte Carlo (MC) simulations are the gold standard for describing various
transport phenomena and have largely contributed to the understanding of
these processes. However, while their implementation for classical transport
governed by exponential step-length distributions is well-established, widely
accepted approaches are still lacking for the more general class of anomalous
transport phenomena. In this work, a set of rules for performing MC
simulations in anomalous diffusion media is identified, which is also
applicable in the case of finite-size geometries and/or heterogeneous
inclusions. The results are presented in the context of radiative transfer,
however their implications extend to all types of anomalous transport. The
proposed set of rules exhibits full compatibility with the pathlength invariance
property for random trajectories, and with the important radiometric concept
of fluence. Additionally, it reveals the counter-intuitive possibility of
introducing interfaces between independent subdomains with identical
properties, which arise from the fact that non-exponential step-length
distributions have a “memory” that can in principle be reset when traversing a
boundary. These results have far-reaching consequences not just for the
physical interpretation of the corrections required to handle these
discontinuities, but also for their experimental verification, due to their
expected effects on the observable pathlength distributions.
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1. Introduction

The relevance of the Monte Carlo (MC)
method for the study of transport phenom-
ena can hardly be overstated. This simple
algorithm is used seamlessly to describe
the propagation of heat,[1] particles,[2] living
organisms,[3] as well as light from the scale
of small biological tissues[4] to atmospheric
physics[5] and entire galaxies.[6]

In many cases, transport is modeled as-
suming a chain of independent scattering
events, leading to an exponential distri-
bution of waiting times or step lengths.[7]

However, in reality, several transport
phenomena take place in complex environ-
ments that introduce statistical correlations
between scattering centers,[8] and hence a
dependence on the previous history of the
random walk that cannot be described by
the memoryless exponential distribution.[9]

Indeed, non-exponential step lengths are
deeply rooted in the study of these pro-
cesses: the very theory of random walks
was first developed for normally-distributed
step lengths to model stock market
fluctuations,[10] and the term itself “random

walk” was coined to describe the diffusion of mosquitoes assum-
ing fixed-length steps.[11] To date, countless more examples are
known of non-exponential step length distributions, including
notable examples such as Mittag-Leffler step functions[12] or Lévy
walks,[13] which have been identified in the mobility patterns of
bacteria,[14] humans,[15] eyemovements,[16] as well as in the prop-
agation of cosmic rays[17] and light,[18] to name a few.
Extending the Monte Carlo method to the non-exponential

case seems as trivial as replacing the step length distribution with
the desired function. While this is indeed sufficient for the de-
scription of trajectories in an unbounded medium, handling re-
flections or crossings at boundaries is less trivial for functions
that are not memoryless. Sample boundaries can in fact occur
at uncorrelated positions compared to scattering events, break-
ing the chain of correlated step lengths, and hence resetting
their memory.
Reciprocity considerations indicate that the length distribution

of any step stemming from a boundary should be the same as
that of the steps which terminate at a boundary.[19–23] Follow-
ing this principle, the fundamental invariance property (IP) of
random trajectories is also automatically fulfilled for all types of
step length distributions.[20,24–28] Nonetheless, the important dif-
ference between scattering and boundary events is typically ig-
nored in the vast majority of Monte Carlo studies of anomalous
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transport, where only one step length distribution is used to gen-
erate trajectories inside a given material.[12,29–33]

In this work, starting from the generalized radiative transfer
equation (GRTE),[34–36] we formulate and verify an extension of
the Monte Carlo method to anomalous light transport in me-
dia with arbitrary inhomogeneities, which has important con-
sequences for the representation of scattering volumes through
mesh or voxel discretizations, as well as for the interpretation of
experimental data. Our results show that modified statistical dis-
tributions must be employed not just for the initial step entering
a scattering domain,[21,23] but also each time a trajectory inter-
acts with a boundary, an effect that can be largely magnified by
the presence of refractive index discontinuities between different
subdomains. The validity of our approach is supported by its full
consistency with the invariance property and, for the first time in
the case of non-exponential propagation, by a direct comparison
with the fluence rate inside each scattering subdomain, which
represents the fundamental radiometric quantity for the descrip-
tion of light transport.[37]

2. Monte Carlo Simulations

To date, an organic theory of anomalous transport has only been
developed for the infinite medium,[34–36] which raises the crit-
ical issue of handling boundaries in anomalous transport. In
this work, previous studies on the generalized radiative transfer
equation are extended by identifying a set of rules for perform-
ingMonte Carlo simulations in heterogeneous anomalousmedia
with boundaries. The resulting set of rules has broad generality,
encompassing also the classical transport as a special case.
In a scattering medium, a boundary is any interface demar-

cating regions with different properties. This includes both the
outer interface between the medium and its host environment,
as well as any internal interface between different regions. The
correct energy balance must be enforced at any boundary, con-
necting the specific intensity in the two adjacent regions accord-
ing to radiative transfer. In theMC picture, this requires to define
how trajectories, which carry energy, interact with such bound-
aries. Since the GRTE is a generalization of the classical radiative
transfer equation (RTE), an implementation of generalized MC
simulations can be built based on the classical MC approach,[23]

with two main modifications:

• non-exponential step length distributions can be used to gener-
ate steps taken inside the scatteringmedium, instead of the ex-
ponential distribution predicted by the Beer-Lambert-Bouguer
law of the classical RTE;

• since in the GRTE the location of scattering centers can be cor-
related, any interaction with a boundary separating different
regions will also reset the memory of a trajectory, requiring
the generation of an uncorrelated step length.[20,21,23]

The second rule follows from the assumption that the position of
amedium boundary should be independent of the position of the
scattering centers inside it. This implies that boundary interac-
tions can occur at uncorrelated positions with any previous scat-
tering event, thus resetting the memory of the non-exponential
step length distribution. Although some of these general con-
siderations have been already outlined in the previous literature,

they are extended here to the case of heterogeneous media with
internal sub-domains, offering a direct illustration of their ex-
pected consequences for experimentally observable quantities.
The identified set of rules is universal, as it can be seamlessly
applied to the special case of classical RTE, by assuming an expo-
nential step length distribution.
Without loss of generality, a spherical geometry with different

domains arranged as concentric shells is considered. The term
pc(𝓁) refers to the “correlated” step length distribution associated
to the bulk of a scattering domain (characterized by homoge-
neous properties), while the term pu(𝓁) is used to identify “un-
correlated” steps originating from a boundary of that domain.
Figure 1 depicts an example of a trajectory in a scatteringmedium
encompassing multiple domains, highlighting the different dis-
tributions required to generate steps that originate within the
medium or at one of its interfaces.
Given a certain distribution pc, its corresponding pu can be cal-

culated as:[21,23,38]

pu(𝓁) =
1 − ∫ 𝓁

0 pc (𝓁
′) d𝓁′

∫ ∞
0 𝓁′pc (𝓁′) d𝓁′

=
1 − ∫ 𝓁

0 pc (𝓁
′) d𝓁′

⟨𝓁⟩ (1)

which is connected to the “survival function” of a probability dis-
tribution, and ensures that steps departing from a boundary have
the same probability distribution of steps that are terminated by
a boundary interaction. As a consequence, it can be shown that
the application of this rule satisfies both the invariance property
and reciprocity.[19–23] Equation (1) implies this, even though it
is formally defined only for distributions having a finite first
moment. Therefore, simulating trajectories in anomalous media
requires the use of two different distributions: one for scattering
events within the medium, and one for steps stemming from
a boundary.
Several examples of non-exponential distributions have been

used in the literature to describe anomalous transport of light,
such as Mittag-Leffler or Lévy stable distributions.[12,13,17,18,39,40]

In this work, without loss of generality, the generalized Pareto
distribution (GPD) is adopted, which is sometimes applied in
economy[41] and ecology.[42] This choice is motivated by several
factors. First, the GPD conveniently admits closed-form expres-
sions for all distributions of interest, including pGPc , pGPu , but also
their inverse cumulative distribution functions that are needed
for efficient random variate generation. Second, the GPD can be
parameterized by a scale parameter 𝜎 and a shape parameter k to
generate a whole family of distributions:

pGPc (𝓁) = 1
𝜎

⎧⎪⎨⎪⎩

(
1 + k𝓁

𝜎

)−(k+1)∕k
k > 0

e−𝓁∕𝜎 k = 0
(2)

comprising also the classical (exponential) case for k = 0. For
k > 0, the distribution becomes fat-tailed, with a diverging vari-
ance for k ≥ 0.5, and even a diverging first moment for k ≥ 1.
This can be seen from the relation linking the parameters k and
𝜎 to the mean value ⟨𝓁⟩, that is the reciprocal of the scattering
coefficient 𝜇s

⟨𝓁⟩ = 𝜇−1
s = 𝜎

1 − k
for k < 1 (3)
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(a) (b) (c)

Figure 1. a) Propagation of a trajectory in an illustrative anomalousmedium comprising two regions with different scattering coefficients 𝜇s1 and 𝜇s2 and
refractive indices n1 and n2. The external environment has a refractive index n0. Step lengths s1,2 inside the scattering domain are extracted according to
pc(𝓁) distributions (black). Steps departing from a boundary (either at the injection point, or following refraction or reflection events) are extracted with
pu(𝓁) distributions (blue). b) Comparison between exponential (k = 0) and non-exponential (k ≠ 0) pc distributions taken from the family of generalized
Pareto distributions with equal mean step value ⟨𝓁⟩ = 1 mm. c) Comparison between the corresponding pu(𝓁) derived as the survival functions of the
respective pc(𝓁). For the exponential case we have that pc(𝓁) = pu(𝓁).

Hence, for k < 1, it is possible to perform simulations with
different shape parameters k while keeping the same scattering
coefficient 𝜇s. In this context, this parameter borrows its mean-
ing from the classical derivation in radiative transfer,[43] and
provides an indication of the rate of scattering events inside the
medium. Finally, by substituting Equation (2) into Equation (1)
and calculating the survival function, pGPu (𝓁) is written as:

pGPu (𝓁) = 𝜇s(1 + k𝓁∕𝜎)−
1
k k > 0 (4)

A useful property of the GPD, is that it admits simple analyti-
cal expressions for the cumulative distributions of both its prob-
ability density functions pGPc and pGPu . For 1 > k > 0, these can be
written as:

PGPc (𝓁) = 1 − (1 + k𝓁∕𝜎)−
1
k (5)

PGPu (𝓁) = 1 − (1 + k𝓁∕𝜎)1−
1
k (6)

Evenmore conveniently forMC simulations, both Equation (5)
and (6) can be inverted to give their respective quantile functions,
fromwhich random correlated and uncorrelated step lengths can
be generated passing a uniformly distributed random argument
𝜉 ∈ (0, 1):

𝓁GP
c (𝜉) = 1 − k

k𝜇s
(𝜉−k − 1) (7)

𝓁GP
u (𝜉) = 1 − k

k𝜇s

(
𝜉k∕(k−1) − 1

)
(8)

while for k = 0 the Beer-Lambert-Bouguer case is recovered,
which is characterized by pBLB(𝓁) = 𝜇s exp(−𝜇s𝓁) and PBLB(𝓁) =
1 − exp(−𝜇s𝓁), hence:[43]

𝓁BLB
c (𝜉) = 𝓁BLB

u (𝜉) = − ln 𝜉
𝜇s

(9)

The two distributions pGPc and pGPu are themain building blocks
for the implementation of MC simulations in anomalous media.
For a generalized Pareto step length distribution, in fact, Equa-
tion (7) can be used to draw random lengths for steps taken inside
a scattering domain, while Equation (8) should be used whenever
the step stems from a boundary. In the first case, the step will re-
tain amemory of the distance from the previous scattering event.
In the second case, this memory is effectively reset by the bound-
ary interaction. The use of a discontinuous distribution based on
the survival function (1) was originally proposed to describe only
the initial step length inside an anomalous scattering domain
in an otherwise homogeneous medium.[20–22] In the presence of
any internal heterogeneity (including, e.g., refractive index, scat-
tering coefficient, or scattering function discontinuities among
different sub-domains), the same rulemust be applied to any step
departing from a boundary, leading to a more significant modifi-
cation of the distribution of step lengths forming each trajectory.
The correctness of this approach is verified in different con-

figurations by checking its consistency against two important in-
variant properties that are expected to hold for general random
walks. In the context of light transport, the first Invariance Princi-
ple (IP), or Cauchy formula,[19,20,24,25,28,44–48] states that the total av-
erage path length ⟨L⟩ for light traveling through a non-absorbing
medium of refractive index n under homogeneous and isotropic
illumination conditions (Lambertian illumination) depends only
on the ratio between its volumeV and surface S, and its refractive
index contrast, n∕n0, with the environment (n0), as:

[27,48]

⟨L⟩ = 4V
S
n2

n20
= ⟨L⟩IP (10)

Equation (10) can be generalized to the case of heterogeneous
media made of discrete sub-volumes Vi with refractive indices ni
as:[27]

⟨L⟩ = 4
Sn20

∑
i

Vin
2
i =

∑
i

⟨Li⟩IP (11)
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The second invariant is built upon the fluence rate Φ(r) =
∫4π I(r, s) ds, defined as the specific intensity in r, I(r, s), inte-
grated along all directions s. Under Lambertian illumination, in-
variant solutions of the RTE in each sub-domain exist,[27] which
can be expressed as:

Φi(r) = 4πIin
n2i
n20

∀r ∈ Vi (12)

where Iin is the constant isotropic radiance impinging on
the medium.
For classical transport, it is well known that the average flu-

ence ⟨Φi⟩ in a sub-volume Vi can be connected to the average
total path length ⟨Li⟩ spent by all trajectories inside the same sub-
volume:[37]

⟨Φi⟩ = Pe
Vi

⟨Li⟩ (13)

where Pe is the total power emitted by all light sources illumi-
nating the medium. In contrast with the average pathlength, the
photon fluence rate is a fundamental and experimentally mea-
surable radiometric quantity in radiative transfer that is largely
employed to describe light transport in several applications.[49–51]

This conceptually independent verification is intimately con-
nected with the foundations of radiative transfer theory, and has
never been reported for the case of anomalous transport.
The consistency of two alternative MC implementations is ver-

ified against both invariant quantities. In the first implementa-
tion, all random step lengths are generated with the same tar-
get distribution, using Equation (7). This corresponds to the
mainstream approach used in classical media,[27,47] which has
been also extended to describe MC simulations of anomalous
transport.[12,29–32] In the second implementation, Equation (7) is
used to handle interactions occurring in the bulk of a scattering
domain, while Equation (8) is used to generate random steps fol-
lowing a boundary interaction. The numerical verification pro-
vides insights on the correct modeling of boundaries in anoma-
lous radiative transport (ART), for which a theoretical description
is not yet available.

3. Results

Monte Carlo simulations are performed on spherically symmet-
ric samples with a variable number of concentric shells and fixed
external radius of 5 mm. Spherical symmetry is particularly con-
venient for the practical realization of a Lambertian and isotropic
illumination associated to the validity of the IP, as it allows to ini-
tialize all trajectories at a single injection point, with an entrance
angle randomly drawn from a cosine distribution.[27,43] Similarly,
under this spherical symmetry condition, the fluence rate can be
calculated as a function of |r| in each concentric shell.
Simulation results are shown for a broad range of scattering

coefficient, i.e., 𝜇s ∈ [10−4, 101] mm−1, and for isotropic scatter-
ing (g = 0). Equivalent results were obtained by setting a phase
function with a finite anisotropy factor, consistently with the in-
dependence of the IP on the scattering properties.
Shape parameter values of k = 0.3 and 0.7 have been selected

for the GP step length distribution, to study two different anoma-

lous transport cases with finite and diverging variance. For each
configuration, 102 simulations with 105 trajectories have been
run and averaged to estimate mean values with their standard
errors.[47]

3.1. Mean Path Length and Fluence

The mean value of the total path length spent inside the medium
by the escaped trajectories, ⟨L⟩, and its corresponding standard
error are shown in Figure 2 for homogeneous and layered geome-
tries with different types of discontinuities. Calculated values are
normalized by the IP prediction given by Equation (11).
A first configuration (Figure 2a,d) shows the case of a homo-

geneous sphere with refractive index n1 = 1.4 in an environment
with n0 = 1. The value predicted by the IP is ⟨L⟩IP = 13.06̄ mm,
in excellent agreement with the value obtained using the discon-
tinuity step at boundaries, for all values of 𝜇s. In the ballistic
regime (𝜇s → 0 mm−1), both methods converge to the correct
value, irrespective of how boundaries are handled. This is ex-
pected since, in the absence of scattering, all trajectories converge
to the ballistic regime, which fulfils trivially the IP via the mean
chord length theorem.[43,44,52] Above a certain scattering strength,
however, significant deviations arise when using only 𝓁c, exceed-
ing 40% for k = 0.7 and 𝜇s = 10 mm−1. This large discrepancy
emerges despite the homogeneous geometry, largely due to the
presence of a refractive index contrast at the external boundary,
which causes some trajectories to be reflected multiple times
inside the scattering medium, thus significantly increasing the
number of uncorrelated step lengths.
Similar results are obtained also for the layered configurations.

Two cases are considered comprising equal-volume concentric
shells with alternating refractive indices (Figure 2b,e), or with an
alternation of both ni and 𝜇s,i (Figure 2c,f), showing good agree-
ment of the proposed strategy for all degrees of scattering.
In Figure 3, the results of anomalousMC simulations are com-

pared against the benchmark fluence prediction given by Equa-
tion (12) for a 10-layered sphere with graded refractive index.
Given their constant refractive index ni, Equation (12) predicts

a constant invariant fluence rate Φi in every point of each layer,
which can be used to verify the correctness of an MC estima-
tion based on the intrinsic definition of the fluence rate.[43] Ex-
ploiting the spherical symmetry of the system under study, this
quantity can be conveniently calculated at any position r inside
the scattering medium by performing a normalized summation
of the contributions to the fluence from all simulated trajecto-
ries passing through a spherical surface of radius |r|.[43,49] In
Figure 3b,d, the resulting values are further checked for con-
sistency against the average fluence rates ⟨Φi⟩ calculated us-
ing Equation (13). The results of MC simulations using the un-
correlated step after each boundary interaction are in excellent
agreement with the expected values, which further confirms the
validity of a direct relation between fluence and mean path-
length also in the context of ART. Identical conclusions can be
reached when considering the full radiance distributions at each
spherical interface and its invariance characteristics.[27] For the
sake of brevity, this additional analysis is not shown, however
all radiance distributions are included in the supporting data
repository.
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(a)

(d) (e) (f)

(b) (c)

Figure 2. Total ⟨L⟩ spent inside a non-absorbing sphere of radius r = 5mm, surrounded by a non-scattering region of unit refractive index, illuminated by
a Lambertian source, normalized to the IP prediction, ⟨L⟩IP. For each value of 𝜇s, three configurations are studied: a homogeneous case with a refractive
index contrast with the external environment (panels a, d); a 4-layered sphere with alternating refractive indices ni (b, e); and a 4-layered sphere with
alternating indices ni and scattering coefficients 𝜇s,i (c, f). The index i indicates the layers from the inside to the outside of the sphere. The gray dashed
line indicates the IP prediction. Blue and red symbols refer to MC simulations obtained with and without the use of Equation (1) after interface events.

3.2. Total Pathlength Distributions

To gain a deeper insight on the effect of discontinuities on
anomalous light transfer, it is instructive to study their impact
on the probability density function of total pathlengths, p(L). The
complete distributions, in fact, can reveal significant differences
that are not apparent when considering only their expectation
value ⟨L⟩ (i.e., the IP).
Figure 4 summarizes the results obtained for two configura-

tions without (Figure 4a,c) and with (Figure 4b,d) refractive index
contrast at the external boundary.
In the index-matched case (which is notably the sole configu-

ration that has been discussed up to now in the literature), only
the initial step (i.e., photon injection) of each trajectory is affected
by the uncorrelated distribution (8). As a consequence, it can be
expected that all macroscopic transport properties for the prop-
agation of light inside this configuration remain unaffected be-
tween the two MC approaches. Indeed, only a small correction is
observed between pairs of distributions (as required to fulfill the
IP condition), while the decay rate of both distributions is other-
wise equal.
On the other hand, a very different scenario is observed when a

refractive index mismatch is introduced at the sphere boundary.
In this case, fulfilling the IP condition (cfr. Figure 4b,d) involves
a modification of the whole pathlength distribution. This mod-

ification involves not just the appearance of a prominent peak
at p(L = 0 mm) due to the intensity that is specularly reflected
at the external interface (which must be taken into account for
the correct verification of the IP), but also an appreciable change
to the decay rates in the multiple scattering regime. While the
magnitude of the peak at L = 0 mm depends only on the refrac-
tive index mismatch, and hence is unaffected by the choice of
the step length distribution taken at boundaries, the amount of
internal reflections of light entering the medium is strongly en-
hanced with increasing turbidity, resulting in a larger influence
of the uncorrelated step lengths over the total pathlength distri-
bution which eventually balances the p(L = 0 mm) peak exactly.
This observation is particularly relevant for the possible ex-

perimental verification of the proposed set of rules, as it sug-
gests that major differences should be expected in the tails of
the pathlength distribution of index-mismatched anomalousme-
dia, which are directly measurable using several experimental
techniques.[53–56]

3.3. Generalized Boundaries in Anomalous Transport

Based on the above considerations, it is instructive to consider
one last type of configuration leading to an apparently counter-
intuitive behavior. As we have discussed, traversing an interface

Adv. Theory Simul. 2024, 7, 2400182 2400182 (5 of 9) © 2024 The Author(s). Advanced Theory and Simulations published by Wiley-VCH GmbH
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(a)

(c) (d)

(b)

Figure 3. a,c) Fluence rateΦ in each sub-volume of a ten-layered sphere of radius 5 mm with refractive index discontinuities (values shown on top) and
constant scattering 𝜇s = 2 mm−1. The gray dashed line represents the values predicted by Equation (12). b,d) Comparison between the fluence rateΦ
and the average total pathlength ⟨Li⟩ of all trajectories inside each layer.

between two materials (having either different step length distri-
bution, refractive index, scattering coefficient, or scattering func-
tion) is a sufficient condition to require that step lengths are reset
after interacting with the boundary. However, in principle, the
same rule should be applied also at the interface between two
independent realizations of the same anomalous material shar-
ing the same optical properties on both sides of the boundary.
Hence, it is worth comparing the case of a homogeneous domain
with that of the same domain arbitrarily split into multiple sub-
domains with equal properties. This is not an abstract exercise,
as it corresponds, for instance, to a case where two or more in-
dependent realizations of the same anomalous material (e.g., a
Lévy glass) are optically glued together to form a single multi-
domain sample.
This configuration is interesting as we know that the proposed

set of rules satisfies all invariant solutions in the homogeneous
configuration, and that introducing boundaries does produce an
impact on the total pathlength distributions. This raises the ques-
tion whether introducing this type of arbitrary or generalized
boundaries inside an otherwise homogeneous domain can lead
to pathlength modifications that are still compatible with the de-
sired invariants.
Figure 5a shows the pathlength distributions p(L) obtained for

five different configurations of a sphere with identical size and
optical properties (r = 5 mm, k = 0.7, n∕n0 = 1.4, 𝜇s = 1 mm−1),
divided into a variable number of equivalent domains.

As expected, the introduction of arbitrary interfaces inside the
anomalous medium has a direct and measurable impact on the
probability of observing trajectories of different lengths, as dic-
tated by the altered balance of each trajectory in terms of their
composition of continuous and discontinuous steps.
Interestingly, however, this change is such that the validity

of the IP remains unaltered (Figure 5b). This result shows that,
albeit necessary, a mere verification of the IP is not a particularly
stringent condition for all aspects of propagation, as it can be
fulfilled by an infinite set of different pathlength distributions.
Conversely, considering the whole p(L) distributions provides
important insights into the dynamics of anomalous transport
that would otherwise remain concealed, and suggest promising
strategies for experimental validation and physical interpretation
of the set of rules needed to handle boundary interactions in
MC simulations.

4. Conclusion

In this work, we verified a set of rules for the description of
boundary interactions in Monte Carlo simulations of hetero-
geneous media with non-exponential step length distributions,
which are relevant for the accurate description of anomalous
transport processes. The investigated set of rules extends previ-
ous works by i) including the general case of refractive index dis-
continuities among different subdomains or with the embedding

Adv. Theory Simul. 2024, 7, 2400182 2400182 (6 of 9) © 2024 The Author(s). Advanced Theory and Simulations published by Wiley-VCH GmbH
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(a)

(c) (d)

(b)

Figure 4. Comparison between total pathlength distributions obtained for a homogeneous non-absorbing sphere of radius r and refractive index n = 1.4
under isotropic incident radiance, in the case of (a,c) matched and (b,d) mismatched refractive index with the environment. For better visibility, curve
pairs related to 2r𝜇s = 1 and 10 are rescaled by factors of 102 and 104, respectively.

(a) (b)

Figure 5. a) Probability density function p(L) and b) normalized average pathlength ⟨L⟩∕⟨L⟩IP for five non-absorbing spheres with r = 5 mm comprising
an increasing number of identical independent layers with identical properties k = 0.7, 𝜇s = 1 mm−1, n = 1.4 and n0 = 1. Results are shown only in the
case where both pc and pu are used.

Adv. Theory Simul. 2024, 7, 2400182 2400182 (7 of 9) © 2024 The Author(s). Advanced Theory and Simulations published by Wiley-VCH GmbH
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environment, and ii) validating the results in terms of the fluence
rate, which represents the main radiometric quantity of interest
in light transport applications. Our results show that, even in the
context of ART, the linear dependence between the average flu-
ence rate and the average pathlength traveled by all trajectories
inside the same subvolume remains valid when the appropriate
step length distribution is used after a boundary interaction.
Extending the applicability of MC simulations to index-

mismatched configurations represents a significant advance-
ment, as we show that the resulting reflection and refraction
events can hugely amplify the effects of such discontinuities on
the overall pathlength distributions. This stands in contrast with
previous reports where a modified step length distribution was
used only for the initial step,[19,21] with a correspondingly van-
ishing impact in the limit of multiple scattering. Conversely, our
results show that such discontinuity steps can introduce macro-
scopic discrepancies that are even more evident in the multiple
scattering limit. Notably, similar discrepancies in the observable
pathlength distributions are expected to arise even in other ge-
ometries (e.g., in a slab configuration) and relaxing the isotropic
and Lambertian illumination condition (e.g., for a pencil beam),
facilitating the comparison with experiments.
Another significant impact of discontinuities in anomalous

media that we revealed is related to the possible presence of in-
terfaces between independent realizations of the same material.
The influence of such boundaries on the pathlength distribution
could in principle be validated experimentally or via quenched-
disorder ray-tracing simulation of Lévy-like samples, ensuring
proper truncation of the non-scattering sub-domains to avoid un-
intentional biasing of the relevant step-length distributions.[57–59]

Even more importantly, however, the existence of these general-
ized boundaries can have profound implications on how several
MC software tools are currently implemented. A prominent ex-
ample is represented by codes with mesh- or voxel-based repre-
sentations of the simulation domain,[60,61] where complex geome-
tries are divided into millions of elementary subdomains, often
with identical optical properties, which however do not necessar-
ily represent independent realizations of the same medium. In
this context, from the perspective of software implementation,
it will be important to distinguish between actual generalized
boundaries between elementary subdomains, and other dummy
boundaries introduced only for convenience purposes, where the
statistical correlations of the step length distribution should not
be reset.
As a final consideration, it should be stressed that the use of the

discontinuity step length distribution (1) should not be viewed an
ad hoc correction for the case of anomalous transport. In fact, we
have shown that it can be considered by all means as a universal
rule encompassing also the classical case. Even for classical trans-
port, in fact, introducing a discontinuity step length after each
boundary interaction preserves all invariant solutions. This is
due to the fact that for an exponential distribution, pu(𝓁) = pc(𝓁),
which may explain why the general applicability of this rule was
not recognized earlier.
Due to its mathematical definition, a relevant issue with Equa-

tion (1) is that it cannot be applied to step length distributions
having a diverging first moment ⟨𝓁⟩ = ∞. Such distributions can
be easily defined (for instance, by setting k > 1 in Equation (2)),
and have even been studied experimentally in certain cases.[31]

However, at the moment, their use in the context of MC simula-
tions remains undefined. Further work is needed to investigate
these edge cases, for instance by testing the limitations of this
approach under even more stringent constraints, or by compar-
ing them against appropriate experimental realizations to gauge
their implications for the correct description and interpretation
of generalized transport processes.
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