

ISTITUTO NAZIONALE DI RICERCA METROLOGICA Repository Istituzionale

Misure su effetto Hall quantistico in criostato senza elio

This is the author's accepted version of the contribution published as:

Original

Misure su effetto Hall quantistico in criostato senza elio / Medved, Juan; Callegaro, Luca; Cassiago, Cristina; Cultrera, Alessandro; D'Elia, Vincenzo; Enrico, Emanuele; Gasparotto, Enrico; Marzano, Martina; Ortolano, Massimo; Pierz, Klaus. - (2024), pp. 205-206. (Intervento presentato al convegno VIII Forum Nazionale delle Misure 2024 tenutosi a San Vincenzo (LI) nel 12-14 Settembre 2024).

Availability:

This version is available at: 11696/82242 since: 2024-11-07T09:38:52Z

Publisher: GMEE

Published DOI:

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright GMEE Copyright degli Autori

MISURE SU EFFETTO HALL QUANTISTICO IN CRIOSTATO SENZA ELIO

J. Medved^(1,2), L. Callegaro⁽¹⁾, C. Cassiago⁽¹⁾, A. Cultrera⁽¹⁾, V. D'Elia⁽¹⁾, E. Enrico⁽¹⁾, E. Gasparotto⁽¹⁾, M. Marzano⁽¹⁾, M. Ortolano⁽²⁾, K. Pierz⁽³⁾, ⁽¹⁾INRIM - Istituto Nazionale di Ricerca Metrologica, st. d. Cacce 91, 10135 Torino ⁽²⁾Dip. Elettronica e Telecomunicazioni, Politecnico di Torino, C.so Duca d. Abruzzi 24, 10129 Torino ⁽³⁾PTB - Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig e.mail autore di riferimento: j.medved@inrim.it

1. INTRODUZIONE

L'INRIM, in accordo col nuovo Sistema Internazionale di unità, realizza le unità di resistenza e impedenza elettrica per mezzo dell'effetto Hall quantistico. Il valore della resistenza quantizzata di Hall (QHR) è scalato in regime continuo con ponti a comparatore di correnti continue, e in regime alternato con ponti di impedenza digitali [1, 2]. L'impiego di dispositivi in grafene [3] consente di effettuare la realizzazione a temperature più elevate e campi magnetici più bassi di quelli necessari con i tradizionali dispositivi a semiconduttore. L'impiego di un criomagnete *dry*, che non impiega elio liquido, consente una riduzione dei costi di gestione e di personale necessari, e tempi più lunghi per la sperimentazione e la misura. Questa memoria presenta i primi esperimenti per la realizzazione dell'unità di resistenza e impedenza in un criostato dry. Sono state svolte misure di resistenza, in regime continuo, di un campione Hall in grafene per verificarne le condizioni di quantizzazione.

2. SISTEMA CRIOMAGNETICO

La figura 1A mostra il criomagnete dry impiegato, che include anche un refrigeratore a diluizione e un magnete superconduttore da 9 T. I diversi stadi A1.1–A1.5 vengono raffreddati da un ciclo termodinamico chiuso a temperature progressivamente inferiori. Il portacampioni A2 è connesso a un dito freddo termicamente collegato all'ultimo stadio, ed è inserito nel criomagnete (non mostrato in figura). La figura 1B mostra il criomagnete B2 in condizioni operative, con la camera a vuoto chiusa. B1 è l'alimentatore di corrente del magnete superconduttore. B3 è l'unità di controllo e di gestione del gas del criomagnete. Il criostato viene chiuso e posto in vuoto 0.1 mPa; il processo di raffreddamento porta il dito freddo alla temperatura di circa 2.6 K in due giorni.

3. CARATTERIZZAZIONI

Il sistema di caratterizzazione in regime continuo è costituito come segue. Una sorgente di corrente (ADRET 103A) e un voltmetro (Agilent 34401), sono rispettivamente dedicati alla polarizzazione del campione ed alla misura di tensione tra i contatti opposti del campione. Un nanovoltmetro (Agilent

Figura 1: Criostato dry impiegato per la realizzazione delle misure.

Figura 2: A sinistra sono riportati i risultati delle resistenze trasversale R_{xy} e longitudinale R_{xx} in funzione del campo magnetico ortogonale. A destra è mostrato il campione di grafene utilizzato per le misure.

34420A) è impiegato per la misura della tensione tra i contatti adiacenti. Un voltmetro (Agilent 34401) monitora l'alimentazione del criomagnete.

4. RISULTATI SPERIMENTALI PRELIMINARI

La Fig. 2A mostra le resistenze trasversale (R_{xy}) e longitudinale (R_{xx}) . R_{xy} cresce all'aumentare del campo magnetico applicato per poi raggiungere un plateau a circa 2 T. In corrispondenza del plateau, R_{xx} scende fino a zero, segno che la condizione di quantizzazione è stata raggiunta. In figura Fig. 2B è mostrato il campione di grafene utilizzato. In seguito, un resistore standard di 1 k Ω è stato confrontato con la R_{xy} utilizzando un ponte di resistenza (Measurements International 6010D). Quindi, lo stesso resistore è stato misurato rispetto al riferimento primario tarato presso INRIM. La differenza tra il valore di QHR e R_{xy} misurata utilizzando il riferimento primario è 0.221(27) $\mu\Omega \Omega^{-1}$.

5. CONCLUSIONI

Sono state effettuate le prime misure dell'effetto Hall quantistico con il nuovo refrigeratore a diluizione ed è stata possibile una misurazione rispetto a un campione di resistenza. Anche se l'incertezza della misura non è ancora sufficiente per sostituire il metodo tradizionale, questo è stato il primo passo verso la realizzazione di unità di impedenza in un criostato dry. Verranno effettuati lavori futuri sulla sonda e sul supporto del campione per migliorare l'accuratezza dei risultati.

RINGRAZIAMENTI

This work has been supported by the project CAPSTAN *Quantum electrical Italian national capacitance standard* funded by the MIUR *Progetti di Ricerca di Rilevante Interesse Nazionale* (PRIN) Bando 2020, grant 2020A2M33J. The project 23FUN07 QuAHMET has received funding from the European Partnership on Metrology, co-financed from the European Union's Horizon Europe Research and Innovation Programme and by the Participating States.

RIFERIMENTI BIBLIOGRAFICI

- M. Marzano, V. D'Elia, M. Ortolano, and L. Callegaro, "Primary realization of inductance and capacitance scales with a fully digital bridge," *IEEE Transactions on Instrumentation and Measurement*, vol. 71, pp. 1–8, 2022.
- [2] M. Marzano, Y. Pimsut, M. Kruskopf, Y. Yin, M. Kraus, V. D'Elia, L. Callegaro, M. Ortolano, S. Bauer, and R. Behr, "PTB-INRIM comparison of novel digital impedance bridges with graphene impedance quantum standards," *Metrologia*, vol. 59, no. 6, p. 065001, 2022.
- [3] M. Kruskopf, S. Bauer, Y. Pimsut, A. Chatterjee, D. K. Patel, A. F. Rigosi, R. E. Elmquist, K. Pierz, E. Pesel, M. Götz et al., "Graphene quantum hall effect devices for AC and DC electrical metrology," *IEEE transactions on electron devices*, vol. 68, no. 7, pp. 3672–3677, 2021.