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Abstract
We analyze the generation of spin-squeezed states via coupling of three-level atoms to an optical
cavity and continuous quantum measurement of the transmitted cavity field in order to monitor
the evolution of the atomic ensemble. Using analytical treatment and microscopic simulations of
the dynamics, we show that one can achieve significant spin squeezing, favorably scaling with the
number of atoms N. However, contrary to some previous literature, we clarify that it is not possible
to obtain Heisenberg scaling without the continuous feedback that is proposed in optimal
approaches. In fact, in the adiabatic cavity removal approximation and large N limit, we find the
scaling behavior N−2/3 for spin squeezing and N−1/3 for the corresponding protocol duration.
These results can be obtained only by considering the curvature of the Bloch sphere, since
linearizing the collective spin operators tangentially to its equator yields inaccurate predictions.
With full simulations, we characterize how spin-squeezing generation depends on the system
parameters and departs from the bad cavity regime, by gradually mixing with cavity-filling
dynamics until metrological advantage is lost. Finally, we discuss the relevance of this
spin-squeezing protocol to state-of-the-art optical clocks.

1. Introduction

Quantum sensors based on atomic ensembles, such as atomic clocks, gyroscopes, magnetometers, etc have
nowadays reached and surpassed their classical counterparts. Their standard quantum limit due to the
measurement noise (quantum projection noise [1]) determines the optimal precision obtainable using
uncorrelated atoms. It can be surpassed by a squeezing factor ξ2 < 1, by introducing quantum
correlations [2]. The simplest entangled state offering metrological gain is the spin-squeezed state (SSS) [3,
4]. Over the past decade, SSSs have been demonstrated in several systems [2], including interacting
Bose–Einstein condensates [5–7], ions [8], and neutral atomic ensembles. Among different techniques, SSSs
have been produced by quantum non-demolition (QND) measurement [9–16], collective spin ensembles
with cavity-mediated interactions [17–19], and Rydberg coupling [20, 21].

In neutral atoms, cavity-aided collective spin measurements enabled up to 20 dB of metrologically useful
spin squeezing [13, 14] involving transitions in the radio frequency (RF) domain, i.e. 5–10 orders of
magnitude smaller than optical frequencies where the best atomic clocks currently work [22, 23]. Recently,
proof-of-principle experiments employing cavity-aided measurements have achieved spin squeezing on an
optical transition [24, 25] and improved clock performances of a state-of-the-art optical clock [26].

Measurement protocols based on continuous monitoring [27] have been extensively studied for quantum
state engineering purposes [28, 29], leading to the outstanding experimental results observed in [30–32] for
the cooling of a quantum mechanical oscillator towards its quantum ground state. In particular much
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theoretical effort has been devoted to the exploitation of this kind of protocols for the generation of
metrologically useful quantum states, such as squeezed states of quantum harmonic oscillators or of SSSs for
atomic ensembles [33–52]. The physical intuition behind these protocols is the following: by continuously
monitoring a particular observable of the quantum system, for example a spin operator for an atomic
ensemble, the variance of such operators will decrease reaching eventually values below the so-called
standard quantum limit, fixed by the fluctuations of the corresponding coherent (classical) states. The
information gain from continuous monitoring is explicitly used either to perform continuous feedback on
the state, resetting the target observable to a fixed value and generating deterministic, unconditional spin
squeezing, or it can be stored for subsequent use. In the latter case, the final estimation for the observable of
interest, namely the bias, and the generated spin squeezing are conditional, namely they depend on the
specific series of measurement outcomes. Spin squeezing is a useful resource when created in the initial state
of a Ramsey protocol: in this case, conditional spin-squeezing is explicitly realized by exploiting the estimated
bias to construct unbiased more precise estimators for the target observable, or to precisely enact a single
final feedback.

Continuous monitoring of the collective spin operator of an atomic system can be achieved by
engineering a dispersive coupling between the atoms and a cavity field driven by an external laser. By
performing a continuous homodyne detection on the cavity output, one is indeed implementing a QND
measurement of the spin operator [16, 35–40, 46, 51, 52]. In this work we will employ both analytical
treatment and full cavity quantum electrodynamics simulations, to characterize how and under which
assumptions this kind of interaction and consequent dynamics can be achieved in specific atomic ensembles,
with a particular attention to the application on future optical clocks.

Our analysis will unveil a surprising result regarding one of the major questions when devising
spin-squeezing protocols, namely the determination of the scaling exponent of the spin-squeezing parameter
for large number of particles ξ2 ∝ N−α. Continuous feedback protocols often reach Heisenberg scaling
α= 1 [35, 36]. Reduction from Heisenberg scaling in spin systems is typically due to the curvature of the
collective Bloch sphere, which causes the backaction of the squeezing operation to reduce contrast. As an
important example, one finds α= 2/3 for the one-axis twisting Hamiltonian (OAT) [3]. In the literature, it
is often implied that continuous monitoring protocols feature Heisenberg scaling in the N→∞ limit, even
in the absence of continuous feedback. Here, we analytically and numerically show that instead a curvature
effect is also present in such case. This important result impacts some qualitative findings regarding
spin-squeezing scaling presented in previous works (e.g. [37, 52–54]).

Another relevant experimental parameter to be considered is the collective state preparation time, which
in the case of the atom-cavity coupled system coincides with the cavity interaction time t. This time must be
optimized in order to reduce atom-cavity scattering and decoherence, and to minimize aliasing noise due to
the added dead-time in the atomic sensor [55]. Also in this case, we find that curvature impacts the expected
result by introducing a dependence on the number of atoms.

The article is organized as follows. In section 2 we introduce in detail the considered model of
continuously measured cavity-coupled atoms, and describe the master equations used to study its dynamics.
In section 3 we discuss the analytical treatment of the cavity-removal regime and the results of our full
simulations, concerning the optimal spin squeezing, the time at which this is expected, and their scaling with
atom number, which is impacted by the interplay between the absence of continuous feedback, Bloch sphere
curvature, and atom-cavity coupling. In section 4 we discuss the relevance of our results for optical clocks,
and in section 5 we draw our conclusions. The Appendices detail the adiabatic elimination of the atomic
excited state, the tangential spin-squeezing parameter evaluation, the analytical derivations, and the
computational details concerning our simulations.

2. Model andmethods

The considered system, as schematically depicted in figure 1, is the simplest model of a cavity-enhanced
atomic optical clock: an ensemble of N three-level uncorrelated atoms placed in a driven-dissipative optical
cavity, which mediates an effective interaction between them. We assume that a deep optical lattice freezes
the translational degrees of freedom of the atoms (Lamb–Dicke regime), so that only the internal states are
relevant. The interaction between an atomic ensemble and a light mode in a high-finesse optical cavity has
been intensively studied for the generation of both atom-light and atom-atom entanglement [19, 56]. We
focus on the generation of the input (spin-squeezed) collective state of a Ramsey protocol, deferring to future
work the analysis of the entire preparation/interrogation cycle, including the role of clock laser noise and
dead time in a closed-loop optical clock [57, 58].
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Figure 1. Panel (a): graphical scheme of the considered protocol. Three-level atoms are coupled to a cavity with coupling g. The
cavity is driven by amplitude ε and transmits at rate κ. The transmitted light is continuously measured via homodyne detection,
yielding photocurrent I(t). The provided information on the atomic state reduces the population difference uncertainty between
the ↑ and ↓ clock states, mapping to smaller spread along the z direction in the collective Bloch sphere. In the absence of
continuous feedback, the average spin does not lie on the equator, but it is conditioned on the measurement result. Panel b:
energy levels and detunings in the Λ−configuration. Panel (c): V−configuration. ω0 and ωc are the clock and the cavity mode
frequencies, respectively.

Throughout the paper we set h̄= 1, meaning that we measure energy in units of angular frequency. The
clock states are labeled ↓,↑, and the clock frequency is ω0. For the clock states subspace, we use the standard
pseudo-spin-1/2 representation: ŝx = (|↑⟩⟨↓|+ |↓⟩⟨↑|)/2, ŝy = i(|↓⟩⟨↑|− |↑⟩⟨↓|)/2, ŝz = (|↑⟩⟨↑|− |↓⟩⟨↓|)/2,
obeying the algebra [̂sj, ŝk] = iϵjkl̂sl. The global atomic ensemble is characterized by a collective spin vector

Ĵ=
∑N

i ŝ(i), and Ĵz = (N̂↑ − N̂↓)/2 corresponds in particular to the difference of population of the two clock
states.

We initially focus on the Λ−level configuration (figure 1(b)) interacting with a single cavity mode ĉ with
balanced couplings g↑ = g↓ ≡ g and symmetric cavity detunings∆↑ =−∆↓ ≡∆= ω0/2. We thus consider
the quantized Stark-shift Hamiltonian

Ĥa =
∑
i

g2

∆
ĉ†ĉ
(
|↑⟩i ⟨↑|− |↓⟩i ⟨↓|

)
=

2g2

∆
n̂ Ĵz (1)

in the rotating frame of the bare atomic levels and cavity mode, whose derivation from the cavity-coupled
three-level Hamiltonian is reported in appendix A. n̂= ĉ†ĉ is the cavity photon number operator. Having
removed the atomic auxiliary excited state e, the population difference of the clock states remains constant, as
the operator Ĵz commutes with the effective Hamiltonian. This dispersive interaction thus provides a means
of QND measurement of Ĵz.

The fundamental request to perform the above excited-state adiabatic elimination is for the detuning
(and thus the clock frequency ω0) to be much larger than any other frequency, so that the transitions to and
from the excited state happen on a much smaller time-scale than any other process. This also translates into a
request regarding the cavity dynamics: from the point of view of the atomic ensemble, the interaction factor
2g2n̂/∆ corresponds to a frequency shift, which must, for consistency, be much smaller than∆. This
corresponds to the request that the average number of photons is

⟨n̂⟩ ≪ (∆/g)2 . (2)

Up to now we described the dynamics of the atomic component and its interaction with the cavity mode.
The internal dynamics of the cavity is given by a usual single mode bosonic Hamiltonian (neglecting
zero-point energy) and an additional driving term, which, in the laboratory reference frame, is given by
Ĥlab

c = ωcn̂+ ε
(̂
ceiωDt + ĉ†e−iωDt

)
, where ωD is the driving laser frequency and ε is the driving amplitude. We
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consider a loss term characterized by a transmission rate κ corresponding to photon decay to the external
environment through the cavity walls. Driving amplitude and transmission rate are not independent, but
related by ε=

√
κP/ωD, where P is the experimentally widely tunable pumping power. When working in the

cavity frame of reference, the cavity Hamiltonian is Ĥc = ε
(̂
ce−iδDt + ĉ†eiδDt

)
, where δD = ωc −ωD is the

detuning between the cavity mode and the driving laser. In this work, we focus on the case of resonant
driving laser δD = 0, where there is no explicit time dependence. This regime enhances the feasibility of
measurement-induced spin-squeezing generation, while the nearly-detuned regime has been also considered
for a deterministic generation of induced-interaction squeezing, which has been often dubbed ‘coherent
cavity feedback’ [17, 19] (not to be confused with the feedback used in some continuous measurement
protocols). In the absence of coupling to the atomic transitions, the number of photons which occupy the
cavity in the steady-state at large times would stabilize at

n0 =

(
2ε

κ

)2

=
4P

κωD
. (3)

Therefore the total Hamiltonian of the atom-cavity system that here we consider is Ĥ= Ĥa + Ĥc.
The main figure of merit of the considered protocol is the spin-squeezing parameter. In a general sense,

squeezed states have reduced variance for a certain observable, at the cost of increased variance for a
non-commuting observable [4]. Following the definition by Kitagawa and Ueda [3], N two-level atoms
being described by a collective spin with maximum magnitude J= N/2 are in a SSS if the variance of one
spin component Ĵ⊥, normal to the mean spin vector ⟨̂J⟩, is smaller than the variance of a coherent spin state
(CSS),∆2 Ĵ⊥ < J/2. To be metrologically relevant, such variance is weighted by the contrast C = |⟨̂J⟩|2/J2,
yielding Wineland’s spin-squeezing parameter [59, 60]:

ξ2 =min
⊥

(
∆2 Ĵ⊥
JC/2

)
. (4)

The spin-squeezing parameter of a CSS is ξ2CSS = 1, corresponding to the standard quantum limit (SQL).
This represents the best scaling available using uncorrelated atoms. Metrologically useful spin squeezing
corresponds to ξ2 < 1.

2.1. Continuous measurement dynamics
The main idea in the scheme that we analyze to generate spin squeezing is that, since the dynamics described
by the Hamiltonian (1) couples directly the collective spin z−component to the bosonic field, we may obtain
information on that particular observable from measurements on the photonic degrees of freedom, without
having to directly perturb the atomic ensemble. A QND measurement does not in fact perform a destructive
projective measurement on the system itself, but instead acts on the environment coupled to the considered
system [61–63]. In particular, through continuous homodyne sensing of the transmitted photonic field√
κĉ [64], one can detect the phase shift proportional to the atomic population difference, thus obtaining

information regarding Ĵz [35, 36, 39, 46].
The dynamics of the internal system is described by a stochastic master equation (SME) for the density

matrix conditioned on the measurement outcome ρ̂c, which contains a decoherence term, due to the
interaction with the external environment, and a stochastic term which instead describes the non-linear
evolution of the system due to the performed measurement [27, 28]:

dρ̂c =−i
[
Ĥ, ρ̂c

]
dt+κD [̂c] ρ̂c dt+

√
ηκH

[̂
ce−iφ

]
ρ̂c dWt

I(t)dt=
√
ηκ⟨̂ce−iφ + ĉ†eiφ⟩c dt+ dWt (5)

where the notation ⟨Â⟩c indicates the expectation value of operator Â with the conditional density matrix ρ̂c
and we have introduced the Lindbladian superoperatorD[A]•= A •A† − 1

2{A
†A,•}, and the non-linear

superoperatorH[A]•= A •+ •A† −Tr
[
•(A+A†)

]
•. The so-called photocurrent I(t) is the outcome of

normalized homodyne detection at each time step, and the parameter φ represents the phase of the local
oscillator to which the photons exiting the cavity are coupled in order to perform the sensing of the bosonic
field [65]. In particular, we choose φ= 0, which corresponds to a measurement of the field quadrature
(̂c+ ĉ†)/

√
2= x̂ in the standard basis. The photocurrent is biased by system observables, but its quantum

measurement noise is described by the Wiener increment dWt. By definition of the second of equations (5),
the Wiener increment can be found as the difference between the actual measured photocurrent I(t) and its
expected value at each time step. Experimentally, it acts as an innovation increment, since including it in the

4
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first of equations (5) allows for considering information about the system that would normally be lost to the
environment. When mathematically modeling an ensemble of possible experiments, as we do, the Wiener
increment is a stochastic variable following a Gaussian distribution with mean E[dWt] = 0 and variance
E[dW2

t ] = dt. Its characteristic property is that, in the infinitesimal time-step limit, its square is not random
but deterministically dW2

t ≡ dt.
The parameter 0⩽ η ⩽ 1 phenomenologically accounts for measurement efficiency. Optimally, for η= 1,

all photons leaking from the cavity would undergo successful homodyne interference and detection, while in
the opposite case of null efficiency, equation (5) would reduce to a Lindblad master equation where the only
effect of cavity transmission is to introduce dissipation.

It is important to realize that conditional evolution implies that the measurement outcome time series
must be put to effective use in order for it to correspond to an information gain to be exploited in a
subsequent Ramsey protocol. One possibility is to perform continuous feedback conditioned on
measurement outcomes, whose description, however, requires additional terms in (5) (see [35, 36]). If
continuous feedback is not enacted, one should track ⟨̂Jz⟩c via all the measurement outcomes, obtaining a
best estimate at the end of the spin-generation protocol. Then, two possibilities are equivalently described
by (5): either acting on the system only at the end of the QND protocol with a single feedback depending on
the inferred ⟨̂Jz⟩c, corresponding to a single final unitary rotation of the SSS towards the equator of the Bloch
sphere (see figure 1(a); or employing the same inferred ⟨̂Jz⟩c as a bias to be subtracted from the projective
measurement of Ĵz at the end of Ramsey protocol [11], which has the advantage of not introducing further
experimental operations. Notice that a single final feedback is not equivalent to performing continuous
feedback, and it is still described by our treatment. To this aim, we now discuss how ⟨̂Jz⟩ can be
experimentally inferred. The master equation defined in (5) can be used to determine the evolution of the
expectation value of relevant quantities, for example ⟨̂Jz⟩c. From the definition of expectation value as
⟨̂Jz⟩= Tr[ρ̂ Ĵz], we get the conditional evolution equation:

d⟨ Ĵz ⟩c =
√
2ηκ

[
⟨̂Jzx̂⟩c −⟨ Ĵz⟩c⟨x̂⟩c

]
dWt

I(t) dt=
√
2ηκ⟨x̂⟩c dt+ dWt . (6)

Since Ĵz commutes with the Hamiltonian, as expected the evolution of its average value is determined
only by the stochastic increment that depends on the measurement outcome. At first it may seem that the
evolution of the expectation value, and thus of the spin-squeezing parameter, may be obtained solely from
the photocurrent measurements and the evolution of the measurement quadrature. However, even though
the state density matrix does not appear directly in (6), it is still necessary to determine the conditional
increment. At any given time, it is thus necessary to know the full conditional density matrix in order to
determine the value of this random increment, and it is not possible to determine exactly the conditional
evolution of the expectation value of relevant observables without also knowing the conditional trajectory of
the full state. However, as we also remark in the following, it is possible in certain scenarios to approximately
determine its value from the photocurrent and also cancel this stochastic contribution via real-time feedback.

Finally, we mention that in our model (5), we do not consider other decoherence sources, like atomic
decay, assuming that their time scales are long, when compared to the relevant dynamics. However, we will
briefly discuss them in section 4.

2.2. Adiabatic cavity removal
As shown in equation (1), the cavity interacts with the atomic ensemble with a maximum absolute frequency
shift

δω ≡ g2

∆
N⩾ 2g2

∆

∣∣⟨ Ĵz ⟩∣∣ . (7)

The other process in which the cavity photons are involved is the cavity loss, which happens at a rate κ, and
corresponds to the information acquisition rate, when η= 1. When this rate is much larger than the effective
shift per photon,

κ≫ δω (8)

the system is said to be in the so-called ‘bad cavity regime’, where the information on the atoms encoded in
the photons leaving the cavity is transferred directly to the detector (when efficiency is maximal), as if the
measurements were performed directly on the spin system. The optical cavity thus represents a ‘medium’
through which information is transferred and, much like the excited state in (1), it can be adiabatically

5
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removed [66]. Following the same scheme, one obtains the effective dynamics described by the following
SME:

dρ̂c = κ̃D
[̂
Jz
]
ρ̂c dt+

√
ηκ̃H

[̂
Jz
]
ρ̂c dWt

I(t) dt= 2
√
ηκ̃⟨̂Jz⟩c dt+ dWt (9)

where the density matrix now refers only to the atomic Hilbert space, and the effective transmission rate
is [35]:

κ̃= 4

(
2g2

∆

)2
n0
κ

. (10)

Here, since the photons are not dynamical anymore and their frequency shift is negligible, we have assumed
that their number is equal to the stationary one in a noninteracting cavity, equation (3). We notice that there
is no longer any Hamiltonian term, apart from a constant Stark shift that has been included in the reference
frame: the cavity-atom interaction is directly embodied by the dissipative and measurement terms of the
effective SME. The generation of spin squeezing under this evolution has been investigated in great detail
in [35, 36]. As for equations (6), also in this case one observes a stochastic evolution for ⟨̂Jz⟩, given by the
equation d⟨̂Jz⟩c = 2

√
ηκ̃ (∆2 Ĵz)c dWt. This may be corrected exactly via Markovian feedback by solving the

full trajectory of the conditional state; the corresponding feedback scheme leads to an unconditional
Heisenberg-limited spin squeezing. It was also shown that an approximate feedback, depending only on the
photocurrent results and not on the full trajectory, allows for deriving the following approximate analytical
solution valid for short-to-intermediate times:

ξ2F =
eκ̃t

1+ ηNκ̃t
(11)

from which one obtains a minimum spin-squeezing parameter following Heisenberg scaling:

ξ2F,m =
e

ηN
, (12)

reached at the optimal time

tF,m =
1

κ̃
. (13)

We now focus on the assumptions needed to perform the cavity adiabatic removal: first of all, the cavity
is assumed to be in the stationary regime, so that the photons follow no dynamics other than the decay into
free space; given a weak interaction with the atomic ensemble, this request relates their number only to the
parameters ε and κ, as in (3). Secondly, the ‘bad cavity’ requirement that κmust be the highest frequency
(besides∆) imposes a further condition besides (8), namely that g2⟨n̂⟩/∆≪ κ. This provides a tighter
bound on the maximum average number of photons expected in the cavity than the one expressed in (2):

⟨n̂⟩ ≪ κ∆/g2 ≪ (∆/g)2 . (14)

2.3. Simulation of system dynamics
We solve the SMEs (5) and (9) using the QuTiP library [67, 68]. A very relevant speed-up is obtained by
considering only the atomic Dicke sector with maximum eigenvalue J(J+ 1) of Ĵ2, with J= N/2 [69]. We are
allowed to do so because we do not consider atomic depolarization and we choose an initial pure state in this
subspace, namely a spin-coherent state with J= N/2. In the cavity-removal approximation, we will
analytically demonstrate that measurement efficiency η < 1 only introduces a constant prefactor in the
minimal spin-squeezing parameter. In all our simulations we considered instead the simpler case η= 1. In
the case of equation (5), the initial atomic state is in a tensor product with an empty cavity. Since we focus on
unit efficiency, this allows us to reduce our simulations to the corresponding stochastic Schrödinger
equations (SSE) [28], with tremendous reduction of memory and computational requirements, since vectors
in Hilbert space are evolved, instead of density operators. See appendix E for details on the simulation setup.

The metrological spin-squeezing parameter of equation (4) is not simply proportional to the spin
variance along z, but it is estimated at any given time by determining the minimal variance of the collective
spin components which are perpendicular to the instantaneous mean spin vector. This corresponds to the
smallest eigenvalue (normalized by the contrast) of the covariance matrix:

covij
(̂
J
)
=

1

2
⟨̂JîJj + ĴĵJi⟩− ⟨̂Ji⟩⟨̂Jj⟩ (15)

6
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where i, j ∈ {1,2} and Ĵi = Ĵ · ni, with ni ⊥ ⟨̂J⟩c. The polar and azimuthal angles are defined by ⟨̂J⟩c by

cosθ = ⟨̂Jz⟩c/|⟨̂J⟩c| , tanϕ= ⟨̂Jy⟩c/⟨̂Jx⟩c . (16)

Details on this evaluation can be found in appendix B.

3. Results

3.1. Analytical results in the cavity-removal approximation
In this section, we determine an analytical expression for the conditional and average spin-squeezing
parameters in the cavity-removal approximation, by analyzing the time evolution of the conditional mean
spin and spin covariance. Here, we outline the derivation, while details are reported in appendix C.

We introduce the scaled time τ ≡ κ̃t and recall that the evolution of the conditional expectation value of
an observable Â is determined by the SME (9) via d⟨Â⟩c = Tr(Â dρ̂c). Since the off-diagonal covariances are
zero for τ = 0, we assume that they remain negligible along the dynamics. This is equivalent to a third order
cumulant truncation, namely a Gaussian approximation, and will be confirmed by the simulations.
Inspection of the SMEs for Ĵx, Ĵy, Ĵ2x and Ĵ

2
y shows then that their evolution is purely dissipative and

unconditional. By taking into account the initial condition of a CSS along the positive x axis, we obtain:

⟨̂Jx (τ)⟩= Je−τ/2

⟨̂Jy (τ)⟩= 0

⟨̂J2x (τ)⟩=
J2

2

(
1+ e−2τ

)
+

J

4

(
1− e−2τ

)
⟨̂J2y (τ)⟩=

J2

2

(
1− e−2τ

)
+

J

4

(
1+ e−2τ

)
(17)

resulting in the following closed expressions:

∆2 Ĵx (τ)

J/2
= J
(
1− e−τ

)2
+

1

2

(
1− e−2τ

)
(18)

∆2 Ĵy (τ)

J/2
= J
(
1− e−2τ

)
+

1

2

(
1+ e−2τ

)
. (19)

Conversely, it is clear that all powers of Ĵz evolve only via the stochastic term, due to them commuting
with the dissipator. However, the evolution of∆2 Ĵz contains a stochastic term corresponding to the third
order cumulant ⟨̂J3z⟩C that we approximate to zero, and an additional unconditional term stemming from Itô
calculus, resulting in

d∆2 Ĵz =−4η
(
∆2 Ĵz

)2
dτ , (20)

whose solution is

∆2 Ĵz
J/2

=
1

1+ 2Jητ
, (21)

This result saturates the uncertainty bound in the y− z plane, for moderate times and η= 1:
∆2 Ĵz∆2 Ĵy ⩾ |⟨̂Jx⟩|2/4 (see panel (a) of figure 2). For large J, the contrast is determined by the x component,
yielding C(τ)≃ ⟨̂Jx(τ)⟩2/J2 = e−τ . Notice that the expressions found for the y and z components are
consistent in the limit of large J with the results from the Holstein–Primakoff approximation (see [38, 39,
46]), which is however unable to correctly describe variations of ⟨̂Jx⟩ and∆2 Ĵx: crucially, in our case these
observables should not be fixed to their initial values, J and 0, respectively, as we demonstrate in the
following.

We are interested in the tangential spin-squeezing parameter, corresponding to

ξ2
(
τ,cos2 θ

)
=

∆2 Ĵ⊥ (τ)

JC (τ)/2
=

∆2 Ĵz (τ) sin
2 θ+∆2 Ĵx (τ)cos2 θ

JC (τ)/2
, (22)

where cosθ is defined by the mean spin via (16) and we again neglected the off-diagonal x− z covariance.
Equation (18) implies that∆2 Ĵx increases quadratically with small time. Panel (b) of figure 2 then shows that
the x contribution to spin squeezing may become dominant if the mean spin is far from the equator. Indeed,
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Figure 2. Sections of the spin covariance ellipsoid and of the collective Bloch sphere on the y− z and x− z planes co-rotating with
the average spin. Panel a exemplifies how, along a single quantum trajectory taken at three subsequent times 0,1,2, ⟨̂Jz⟩c evolves
stochastically but gradually converging, due to the z variance unconditionally decreasing, while the y uncertainty correspondingly
increases. On panel b, we exemplify the tangential-spin standard deviation∆J⊥ for different polar angles θ of the mean spin,
showing that, at fixed z uncertainty, the smaller the polar angle, the higher the x relative contribution is. Sizes and angles are
exaggerated and reduction of contrast is not showed for clarity.

the absence of continuous feedback in our approach implies that, even in the J→∞ limit, θ should not
simply be set equal to π/2. The reason is that the statistical distribution P of conditional values of ⟨̂Jz⟩c is
constant in time and equivalent to the initial one, which is Gaussian, in the large J limit, and reads:

P
(
⟨̂Jz⟩c

)
=

1[
2π∆2 Ĵz (0)

]1/2 exp
(
− ⟨̂Jz⟩2c
2∆2 Ĵz (0)

)
. (23)

We can now analytically evaluate the trajectory average of the conditional spin-squeezing parameter in
the absence of continuous feedback of equation (22), ξ2NF(τ) = E[ξ2(τ, ⟨̂Jz⟩2c/|⟨̂J⟩|2)], by noticing that
equation (C.8) depends quadratically on ⟨̂Jz⟩c, while the rest of the expression is unconditional in our
approximations, and we obtain:

ξ2NF =

ˆ +∞

−∞
P (q)ξ2

(
τ,

q2

|⟨̂J⟩|2

)
dq= ξ2

(
τ,

∆2 Ĵz (0)

J2C (τ)

)

=

(
1− eτ

N

)
eτ

1+ ηNτ
+

1

2N

[
N(eτ − 1)2 + e2τ − 1

]
. (24)

We have thus found that Gaussianity implies that the average spin-squeezing parameter is the one
corresponding to a trajectory where ⟨̂Jz⟩c is equal to the initial standard deviation of Ĵz.

To infer the scaling of the optimal time and minimal squeezing with the number of particles, we first keep
only the dominant terms of the previous expression for N→∞, and then expand for small time, presuming
that the minimum occurs for τ ≪ 1:

ξ2NF (τ) ≈
N→∞

1

ηNτ
+

1

2
(eτ − 1)2 ≈

τ→0

1

ηNτ
+

τ 2

2
. (25)

It is clear here that the second term, stemming from the∆2 Ĵx contribution, causes an increase of the
tangential spin-squeezing parameter, in competition with∆2 Ĵz that is decreasing. The time at which the
minimum is reached is dubbed the optimal time tm and is relevant when devising an experimental protocol.
In our analytical approximation, it occurs for

tNF,m =
τNF,m
κ̃

=
1

κ̃(ηN)1/3
, (26)

corresponding to the optimal average spin-squeezing parameter

ξ2NF,m =
3

2

1

(ηN)2/3
. (27)

Notice that the effect of non-optimal measurement efficiency η < 1 is to simply introduce a constant factor,
amounting to an effectively reduced atom number ηN.

We highlight here that tangential spin-squeezing in the absence of continuous feedback is worsened by
the contribution coming from an increasing variance of Ĵx, which must be taken into account due to the
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Figure 3. Comparison of the results of a cavity removal simulation with N= 160 atoms and η= 1, and the corresponding
analytical expressions from section 3.1.

curvature effect even in the N→∞ limit. This implies a minimum average spin-squeezing parameter that
loses Heisenberg scaling and is on par with the OAT result in [3], and a corresponding optimal time which is
not size independent. The found spin-squeezing exponent is slightly smaller than the one, α≃ 0.73, recently
obtained with a mean-field approach in a similar setup when also the pump detuning is optimized [19]. The
scaling exponents α, for the minimum average spin-squeezing parameter and β, for the optimal time, are
consistent with the relation α+β = 1, which also holds for the cavity-mediated interaction model of [17,
19] (see appendix D). The role of Bloch sphere curvature, that we unveiled in the considered no-feedback
continuous measurement protocol, and its impact on scaling, are akin to an effect discussed for a Ramsey
protocol starting with an initial already SSS [70], with the notable difference that here the relevant curvature
is due to the initial variance of Ĵz, while in the other case it originates from clock laser noise.

3.2. Comparison with numerical results in the cavity-removal approximation
We now check the analytical results and assumptions of the previous section, via numerical solution of the
SME (9), with η= 1.

The results of a SME are crucially conditioned on the sampled noise, which is not a computational
artifact, but has the physical meaning of representing a possible realization of the noise of the continuous
measurements. Therefore, we both evaluate the distribution of conditional results ⟨Â(t)⟩c = Tr[Âρ̂c(t)] of
some relevant physical quantities Â, and then we consider their statistical average over theM trajectories
E[A(t)]. The variance of the average, which is smaller the higherM, is not to be confused with the variance of
the distributions, which increases over time due to the wandering of the average collective spin and the
absence of feedback, at odds with unconditional protocols.

In figure 3 we show the values of relevant elements of the covariance matrix, along different trajectories,
together with the contrast and the average tangential spin-squeezing parameter E[ξ2], and compare them to
our analytical predictions (dashed lines). We simulated N = 160 atoms and normalized the time with the
effective information rate κ̃. The diagonal variances and the contrast are clearly almost unconditional and in
excellent agreement with the results of the previous section. Consistently, the off-diagonal covariances are
essentially zero (xy and zy cases, not shown) or negligible (xz). Notice how the z and x variances have
opposite behavior, implying that their weighted sum, the average spin-squeezing parameter, displays a
minimum and then worsens. Also for this crucial quantity, the analytical expression of equation (24) is in
very good agreement with the numerical result in the region of the minimum (deviations at higher times
stem from finite-size effects, see appendix C).

In figure 4 we now also check the analytical expression corresponding to (22) (see equation (C.8)) against
simulations with varying number of atoms. At fixed time, such expression provides the correlation between
the conditional value ⟨̂Jz⟩c and the corresponding conditional spin-squeezing parameter. For each simulation
we select the optimal time tm and plot (C.8): the agreement is again very good and discrepancies start to be
noticeable only for very large ⟨̂Jz⟩c, where the conditional contrast should take into account not only the
unconditional x component, but also the z contribution. Notice also that the average squeezing (horizontal
lines) is consistent with the conditional squeezing corresponding to ⟨̂Jz⟩c equal to the initial standard
deviation (vertical lines), an agreement which increases the larger the particle number. This figure manifests
the effect of Bloch sphere’s curvature: trajectories which keep ⟨̂Jz⟩c ≈ 0 display the best conditional spin
squeezing, because the fixed squeezing direction z is almost perpendicular to the average spin. In a
continuous feedback scheme, the state is constantly realigned with the equator, thus always obtaining the
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Figure 4. Correlation between ξ2 and ⟨̂Jz⟩c taken at the optimal time tm forM= 100 trajectories in the cavity-removal
approximation with κ̃= 0.8∆. Distributions are ordered by increasing atom number and horizontal dashed lines indicate the
optimal average spin-squeezing parameter ξ2m. In order to compare results for different atomic sizes, the z−component of spin is
normalized by the total spin J. Vertical lines correspond to the standard deviation of Ĵz in the initial state. Dashed curves are
equation (C.8), where the only parameter is the chosen time from the simulations.

maximum possible squeezing. On the other hand, in the absence of feedback, many trajectories will result in
⟨̂Jz⟩c far from the equator, corresponding to worse spin-squeezing parameter, due to the squeezing operation
not acting perpendicularly to the average spin. Although one might assume that the Holstein-Primakoff
approximation for the collective spin is valid in the N→∞ limit, implying that the plane tangent to the
Bloch sphere is always perpendicular to the equator and thus feedback is not necessary to achieve Heisenberg
scaling, we have in fact analytically and numerically demonstrated that the role of curvature persists in such
limit, resulting in α= 2/3 for metrological spin squeezing. Heisenberg scaling characterizes spin squeezing
only if evaluated along the fixed z axis [53], which is not, however, metrologically exploitable. We
numerically check the predictions concerning the scaling of the spin-squeezing parameter and the optimal
time in the following section, together with the results from the full simulations.

3.3. Numerical results for the full atom-field dynamics
Having analytically and numerically solved the dynamics in the bad cavity regime in cavity removal
approximation, we now focus on the numerical solution of the full SME (5). We are interested in inspecting
the accuracy of our previous results and to investigate the main qualitative and quantitative changes to be
expected when gradually exiting the bad-cavity regime. The numerical data produced in this study are
available online [71].

Evolution of observables for different trajectories. In figure 5, we show the distribution of relevant
observables along different conditional trajectories from the full simulations in the bad-cavity (left panels)
and out of the bad-cavity regimes (right panels). We focus on the number of photons in the cavity ⟨n̂(t)⟩c
(panels (a) and (d)), the clock population difference ⟨̂Jz(t)⟩c (panels (b) and (e)), and the spin-squeezing
parameter ξ2 defined in (4) (panels (c) and (f)).

In the bad cavity regime, the photon number almost deterministically fills the cavity (panel a), reaching a
value close to the non-interacting case n0. It takes a transient time δt= c/(κ/2) with c≈ 3 for the statistical
average E[n̂(t)] to reach 90% of the stationary value. During such transient, the population differences (panel
b) depart from zero and vary widely, each trajectory tending to fluctuate around a particular eigenvalue of Ĵz,
since continuous measurement increases the precision in its knowledge. For small times, most of the
trajectories of the spin-squeezing parameter (panel c) are compatible with each other, while, as time
progresses, the distribution of ξ2(t) widens. Some of the trajectories continue to decrease and follow what
appears to be an optimal value. This limiting values indeed compare well with the analytical approximate
expression in the case of feedback (dot-dashed line), equation (11), provided a temporal shift equal to δt is
introduced. On the other hand, most of the trajectories tend to increase after reaching a minimum value at
some time. Their statistical average also manifests a steep initial decrease, followed by a minimum and a slow
increase, until metrological advantage is lost. Hence the reason for characterizing each considered system
with the minimum of the average spin-squeezing parameter, ξ2m =mintE[ξ2(t)]. In panel c, we also plot
E[ξ2(t)] for the adiabatically removed cavity simulation (dotted line), and from the analytical expression (24)
(solid curve); we observe that they are essentially the same as for the full system, provided the initial offset δt
is introduced. This indicates that the squeezing process begins as soon as the phase shift induced by the
atoms on the photons is detected by the continuous measurement, but the generation rate of spin squeezing
reaches its optimal value only when n(t) reaches its stationary value. On the other hand, the adiabatically
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Figure 5. Numerical simulation of the full atom-cavity dynamics in different dissipation regimes, with N= 45, g= 0.05∆, and
η= 1. Left panels report exemplary trajectories from equation (5), in the bad-cavity regime, with κ= 0.4∆, ε= 0.4∆ and
g2N/∆≃ 0.3κ. Right panels are examples from out of the bad-cavity regime, with κ= 0.04∆, ε= 0.04∆ and g2N/∆≃ 3κ.
Panels a and d: distribution of ⟨n̂(t)⟩c in units of the non-interacting stationary value n0. The (red) dashed line is the statistical
average E[n̂(t)]. Panels (b) and (e): distribution of ⟨̂Jz(t)⟩c. The (red) dashed line is the statistical average E[Jz(t)], and the (green)
dot-dashed lines correspond to the standard deviation of Ĵz in the initial CSS state. Panels c and f: distribution of ξ2(t). The (red)
dashed line with a band reports the statistical average E[ξ2(t)] with its statistical uncertainty from 400 trajectories. The horizontal
dashed line is the SQL. The (purple) dotted line is the average E[ξ2(t)] for the corresponding adiabatically removed cavity
simulations of equations (9) and the (green) solid curve is the analytical expression (24), while the (blue) dot-dashed line is
equation (11). Both curves have been shifted by the time at which the number of photons in the full simulations reaches 90% of
the stationary value, as extracted from panels (a) and (d).

removed cavity approximation assumes a stationary photon population, so that the information on the
atomic ensemble is directly transmitted to the homodyne detector and spin squeezing is generated right
away. Notice that at short times most of the trajectories of our no-feedback protocol for the full system are
compatible with the offset cavity removal results, either excluding (solid or dotted lines) or including
(dot-dashed line) feedback. The feedback protocol would require to continuously employ the information
gained from the continuous measurement outcomes to realign the atomic state to the equator of the
collective Bloch sphere, and guarantee that ⟨̂Jz⟩c ≈ 0. However, as the trajectories evolve and the average
collective spins move away from the equator, the tangential planes, on which the metrological spin squeezing
is evaluated, are typically less and less parallel to the fixed measurement direction z: this causes the departure
from the feedback solution.

Our full simulations allow us to consider also scenarios with smaller κ, outside the bad-cavity regime.
Here, the stationary photon number (panel d) varies strongly for different trajectories and is generically
significantly lower than in the non-interacting case. The transient δt, defined as above, corresponds to c≈ 2.5
and is longer, due to smaller κ. It takes therefore a longer time for the population difference to stabilize
(panel e), and correspondingly, the dynamics of spin-squeezing generation is strongly mixed with cavity
filling, resulting in much larger variance of the distribution of ξ2(t) (panel f), even at short times. This has
two consequences: first, the minimal average spin-squeezing parameter is worse than in the bad-cavity
regime, since most of its trajectories stop decreasing earlier, resulting in a smaller optimal time; second, the
cavity removal simulations, with or without feedback, do not provide accurate information on the full
system, even introducing a time offset as above.

Dependence of ξ2m on coupling at fixed N. Having shown two representative cases, we now consider the
dependence of the minimum average spin squeezing in the full system case on the ratio of the effective
interaction frequency of the cavity with the atoms g2/∆ and the transmission rate κ. In figure 6 we report the
N = 45 case. For small values of this ratio, the bad-cavity condition (8) is fulfilled (before the vertical dashed
line), and the results converge to the cavity removal simulation with the same number of particles. For this
latter case, it is natural for ξ2m to only depend on the number of atoms, since the spin-squeezing parameter is
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Figure 6. Dependence of ξ2m on g2/κ∆, for various combinations of parameters (see table F1). The vertical dashed line indicates
the boundary of the bad-cavity condition as defined by (8), and empty symbols are outside said regime. The dotted line reports
the numerical cavity removal result, which, for N= 45, is more accurate than equation (27).

Figure 7. Dependence of ξ2m on N, for various combinations of parameters, with η= 1. Full (empty) symbols correspond to full
simulations in (out of) the bad cavity regime (see table F2). Diamonds are simulations in the cavity removal approximation. The
horizontal dashed line indicates the SQL. The (purple) dot-dashed line is the analytical scaling ξ2NF,m (27), while the (blue) dotted
line is the analytical Heisenberg scaling in presence of feedback ξ2F,m (12).

dimensionless and equation (9) only contains the frequency κ̃, which sets the timescale. Ratios of other
dimensional parameters that only occur in the full master equation (5), such as the transmission rate κ, the
driving amplitude ε, and the coupling g2/∆, in principle become relevant outside the bad-cavity regime,
when also the details of the cavity directly affect the global dynamics. Indeed, here we observe a reduction of
spin squeezing with respect to the cavity removal result. Unexpectedly, we still observe small dispersion of
the results up to moderate values of g2/κ∆, the residual variance arguably related to the driving amplitude
and thus the stationary number of photons.

Scaling of ξ2m with N. We now discuss the scaling dependence of the spin-squeezing parameter on the
atomic ensemble size. In figure 7, we compare the results of the full simulations of different configurations to
the numerical results obtained with the adiabatic removal of the cavity, which provide the optimal spin
squeezing achievable with this continuous measurement scheme in the absence of feedback. As a reference,
we report also the analytical result (12) from [35, 36], for the continuous feedback scheme (dot-dashed line).
This reaches the ultimate Heisenberg scaling. The efficiency of the cavity removal simulations of equation (9)
allows us to consider up to N = 20000 atoms (diamond symbols). We then fit the power-law ξ2m = a/Nα and
observe convergence in the results, provided only numbers N⩾ 103 are considered. We obtain a= 1.89(6)
and α= 0.680(6), which favorably compare to the analytical result (27) (dashed line), even though
finite-size effects are noticeable. We simulate the full master equation (5) up to N = 200, for various
configurations of g2/∆, κ, ε. We confirm the observation that, in the bad-cavity regime (full symbols), ξ2m is
independent of any parameter other than N, as the results for different configurations are all compatible with
each other. As the system size increases past N≳ κ∆/g2 (empty symbols), the results progressively start to
deviate from the optimal scaling, even beginning to increase and eventually losing metrological advantage.

Scaling of the optimal time on N. In figure 8, we now investigate whether a power law dependence in N
holds for the optimal time tm, for different configurations. Since in the bad cavity regime the effective
dynamics is governed by the effective transmission rate (10), we scale tm for each configuration with the
corresponding 1/κ̃. We then fit the cavity removal results with the power-law tm = b/(κ̃Nβ), obtaining,
when considering N⩾ 103, b= 0.9(1) and β = 0.32(1), which are in agreement with the analytical
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Figure 8. Scaling dependence of optimal time tm on the number of atoms N, for various combinations of parameters, with η= 1.
Full (empty) symbols correspond to full simulations in (out of) the bad cavity regime (see table F2). Diamonds are simulations in
the cavity removal approximation. Main figure shows the optimal time scaled with the corresponding effective rate κ̃, estimated
using (10). Inset shows the optimal time considering the offset introduced in equation (28). The dot-dashed lines report the
analytical scaling tNF,m from (26).

Figure 9. Scaled optimal time dependence on κ̃/κ for the full dynamics, for various combinations of parameters (see table F1).
Circles: results for N= 20 atoms. Triangles: results for N= 45 atoms. The dotted line corresponds to (28), with parameters fitted
from the cavity removal simulations and including the cavity filling offset.

result (26). Concerning the results from the full simulations, we notice that they are mostly compatible with
each other and with the cavity-removal ones, once scaled with κ̃. However, discrepancies increase with larger
driving amplitude (circles), corresponding to large stationary photon number∼ n0. As we commented when
discussing figure 5, this increase of the optimal time can be modeled by adding a contribution describing the
transient δt required for filling the cavity, which is initially empty:

tm =
b

κ̃Nβ
+

2c

κ
, (28)

where c≃ 3 deep in the bad-cavity regime. By removing such transient contribution (inset of figure 8), we
indeed observe good agreement among all data.

Dependence of tm on coupling. In figure 9, we focus on the role of coupling in the full simulations in
determining the optimal time. We scale the latter also with the obtained power-law dependence on the
atomic ensemble size, and compare two system sizes, N = 20 and N = 45. Unlike for the spin-squeezing
parameter in figure 6, here we notice that a good scaling variable is the ratio of the effective transition rate κ̃
with the original transmission rate κ. This hints at a prominent role of the number of stationary photons,
since κ̃/κ= 16(g2/κ∆)2n0. A qualitative explanation of figure 9 is the following: the squeezing process
begins to be considerable only after the cavity has reached the steady state. When κ≫ κ̃, this filling transient
is negligible in comparisonto the squeezing characteristic time, and the bad-cavity adiabatic removal
prediction is accurate. As the ratio κ̃/κ increases, the transient time cannot be neglected, but becomes more
and more relevant. As the two time-scales become comparable, κ̃/κ∼ 1, once the cavity steady-state is
reached the atomic degrees of freedom are already partially squeezed, therefore it takes less to achieve the
optimal average spin squeezing than as estimated with (28).
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4. Relevance to V-level optical clocks

Up to this point we have focused on the Λ−configuration, where a single excited state is coupled to two
ground states: this configuration is relevant to describe alkali atoms such as Rubidium where the clock
frequency is in the microwave range [17, 72]. However, the same basic scheme can be adapted also to V−level
atoms (as depicted in figure 1(c), in which a single ground state is coupled to two different excited states.
This configuration is relevant for the low-lying levels of alkaline earth-like atoms, such as Strontium, which
is the atomic species employed in the cavity-enhanced atomic clock being developed ad INRiM [73]. In this
case, the cavity-aided continuous measurement protocol detailed above could be adapted to operate in the
proximity of the closed 1S0 − 3P1 intercombination transition, which is particularly suitable for continuous
measurements because of its extremely low spontaneous emission rate. Since the 1S0 − 3P0 clock transition is
far-detuned to the cavity and does not directly participate in the dynamics, the N↑ population is constant.
We can still define a collective spin observable as difference of population between the clock states [74]:

Ĵz =
N̂↑ − N̂↓

2
=

N

2
− N̂↓. (29)

We stress that this definition is valid under the assumption that the number of atoms on the two clock states
N does not change during the dynamics. Just as for the Λ−configuration, it is possible to choose a blue
detuning∆= ωc −ωe ≫ g↓ ≡ g so that the excited state of the cavity-coupled transition can be adiabatically
removed (see appendix A). In this configuration, the effective Hamiltonian couples the cavity only to the
ground state projection operator:

Ĥa =
N∑
i=1

g2

∆
n̂ |↓⟩i ⟨↓|=

g2

∆
n̂ N̂↓ =− g2

∆
n̂̂Jz +

g2

2∆
n̂N . (30)

The above effective Hamiltonian is basically equivalent to equation (1), except for a factor−2 in the
coupling and a constant cavity resonance shift [74], which can be neglected in the measurement dynamics.
Therefore the results of section 3 can be adapted to the Sr case. The optimal squeezing time tm should be
minimized, to reduce spontaneous losses due to absorption of cavity probe light. This can be obtained at the
border of the bad cavity regime, g2N/∆≃ κ, which fixes the optimal detuning∆= g2N/κ. In this regime,
the excited state adiabatic elimination condition (2) requires that the stationary cavity photon number

n0 ≪
(
gN

κ

)2

≡ nlim (31)

corresponding to an input power limit P(nlim) = g2N2h̄ωD/4κ∼ N2 · 10−3 pW according to (3) and the
experimental parameters in [73] (namely g≃ 2π · 7 kHz, κ= 2π · 30 kHz, ωD ≃ 2π · 429 THz). We then
introduce an attenuation factor f = P(nlim)/P= nlim/n0 and the optimal time for squeezing is estimated
with

tSrm ≃ fκ

4g2N1/3
+

6

κ
. (32)

In the case of N= 104 and f = 100, namely P= 1 nW, then tSrm ≃ 150 µs, which is within the current
state-of-the-art for continuous quantum measurements of quantum systems [31, 75]. The expected optimal
average spin squeezing parameter would be ξ2m ≃ (3/2)/N2/3 ≃ 25 dB. The role of incoherent scattering of
cavity photons from the adiabatically removed excited state |e⟩, characterized by the spontaneous emission
rate γ, is estimated of the order of Γsc = γn0g2/∆2 [54, 76]. Comparing the effective collective information
rate κ̃ with an effective collective decoherence rate then yields κ̃/(Γsc/N)∝ N4g2/(κγ)≡ NC0, namely the
collective cooperativity [77], which must be NC0 ≫ 1. This condition must be fulfilled in any conceived
QND-induced spin-squeezing experiment and in particular for the proposed protocol [73].

5. Conclusions

In this work we analytically and numerically analyze the dynamics of a three-level atom coupled to an optical
cavity affected by a continuous measurement of the transmitted cavity field. We show how this continuous
measurement observation scheme consistently generates conditional SSSs. We analyze in detail the
corresponding average spin squeezing in the different regimes characterizing the cavity properties and the
strength of the interaction between atoms and the cavity mode. We demonstrate that, in the bad-cavity
regime and cavity removal approximation, the achievable optimal average spin squeezing depends solely on

14



Quantum Sci. Technol. 9 (2024) 035032 A Caprotti et al

the atomic ensemble size with scaling exponent α= 2/3; complementarily, the optimal duration of the
squeezing operation shortens with exponent β = 1/3 on particle number, and depends on an effective
information rate. Out of the cavity-removal approximation, we observe that the first correction to this result
equals to the short transient required to fill the cavity. Exiting this regime gradually complicates such simple
picture and introduces explicit dependence on the pumping parameters. The scaling found does not match
the ideal results obtained with a continuous feedback scheme, due to the role of the Bloch sphere curvature,
as we demonstrate analytically; nevertheless, it is comparable to the scaling for other squeezing methods (e.g.
OAT [3]) and has the additional advantage of relying on a much simpler experimental configuration that
does not require a strict feedback control of the atomic system which would introduce further sources of
noise [13]. We considered the role of non-unity measurement efficiency and atomic scattering of the cavity
field from the excited state, at the level of Gaussian approximation in the bad-cavity regime. Considering
these effects also in the full simulations is a major computational challenge that will be addressed in future
works, to investigate how they impact the optimal expected average spin squeezing. Also, optimization of the
pump laser detuning will be included to investigate the interplay between continuous measurement and
cavity-induced interactions [19, 54, 78]. Finally, it would be useful to compare full simulations with the
results from the cumulant expansion [53, 79, 80] and investigate whether an analytical approach can be
pursued also in this case.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://
zenodo.org/records/10 250 600.

Acknowledgments

This work was supported in part by the European Union’ Horizon 2020 Research and Innovation Program
and the EMPIR Participating States through the project EMPIR 17FUN03-USOQS. We acknowledge funding
from the QuantERA project Q-Clocks, and from Italian Ministry of Research and Next Generation EU via
the PRIN 2022 Project CONTRABASS (Contract No. 2022KB2JJM). We acknowledge the CINECA award
IsCb5-PSIOQUAS under the ISCRA initiative, for the availability of high-performance computing resources
and support.

Appendix A. Adiabatic elimination of the atomic excited level

The interaction between the single-mode cavity photon field and the ensemble of N three-level uncorrelated
atoms, as depicted in figure 1, panels b and c, is described by the Tavis-Cummings Hamiltonian [81, 82]
extended to two atomic transitions. Each atom contributes a three-level single-mode Jaynes–Cummings
term:

ĤJC =
∑

j=↓,↑,e

ωj |j⟩⟨ j|+ g↓ĉ |e⟩⟨↓|+ g↑ĉ |e⟩⟨↑|+ h.c. (A.1)

where the energy of each atomic level |j⟩ is ωj and in general each transition j↔ e has a different coupling
strength gj to the single photonic mode described by the bosonic field operator ĉ. The ground-state
detunings are defined as the difference between the transition frequencies and the cavity frequency ωc:
∆j = ωc − (ωe −ωj), with j =↓,↑. The frequency splitting ω↑ −ω↓ = ω0 is the reference clock frequency. We
assume that both the detunings and the couplings are uniform across the system.

Based on the coupling strengths gj, the system assumes one of the possible three-level configurations: for
example, by taking g↑ = 0 we obtain a description for a V−level configuration as shown in figure 1(c),
typical of alkali-earth atoms such as Sr in which only the ground state ↓ is coupled to the cavity mode, whose
frequency is of magnitude similar to the clock frequency (see section 4). In this paper, we mainly consider the
Λ−level scheme (see figure 1(b) in which both the ↓ and the ↑ levels are coupled to the excited state e via the
cavity mode. This configuration is typical of alkali atoms such as Rb, for which ω0 ≪ ωe −ω↑ ≃ ωc.

It is convenient to perform the transformation of (A.1) to the rotating frame defined by the bare atomic
and photonic energies:

ĤR = g↓e
−i∆↓tĉ |e⟩⟨↓|+ g↑e

−i∆↑tĉ |e⟩⟨↑|+ h.c. (A.2)
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If the cavity mode is far-detuned from both the atomic transitions, with respect to the couplings
|g↑|, |g↓| ≪ |∆↑|, |∆↓|, the excited state, if initially empty, remains very little populated at the time scales of
interest. Therefore it can be adiabatically removed, in order to simplify the interaction which describes the
system dynamics. We briefly recap the time-averaging technique [83, 84] that allows to perform such
removal. Equation (A.2) is of the harmonic form Ĥ=

∑
n ĥne

−iωnt + h.c. which can be approximated by

Ĥeff =
∑

m,n[ĥ
†
m, ĥn]e

i(ωm−ωn)t/ω+
mn + h.c., with (ω+

mn)
−1 = (ωm)

−1 +(ωn)
−1, provided |ωm +ωn| ≫

|ωm −ωn|. In our case it is therefore convenient to choose ĥ1 = g↑ĉ |e⟩⟨↑|, with ω1 =∆↑, and ĥ2 = g∗↓ĉ
† |↓⟩⟨e|,

with ω2 =−∆↓, resulting in

Ĥeff = 2

(
|g↑|2

2∆↑
− |g↓|2

2∆↓

)
ĉ†ĉ ŝz +

(
|g↑|2

2∆↑
+

|g↓|2

2∆↓

)[̂
c†ĉ−

(
2+ 3ĉ†ĉ

)
|e⟩⟨e|

]
. (A.3)

When both the couplings are different from zero, such as in the Λ−level case, it is convenient to tune the
cavity so that∆↓ =−∆↑|g↓|2/|g↑|2 and the second term of (A.3) vanishes, resulting in
Ĥeff = 2(|g↑|2/∆↑)̂c†ĉ ŝz. Summing this equation over the atoms yields equation (1), where we used, without
lack of generality, the simplification that the couplings are real and equal, g= g↓ = g↑, and thus
∆↑ =−∆↓ = ω0/2≡∆.

If instead we consider the V−level case with g↑ = 0, then (A.3) reduces to
Ĥeff =−(|g↓|2/∆↓)̂c†ĉ ŝz +(|g↓|2/2∆↓)[̂c†ĉ− (2+ 3ĉ†ĉ) |e⟩⟨e|]. Summing this equation over the atoms yields
equation (30), provided the occupation of the excited state is neglected.

Appendix B. Details of the spin-squeezing parameter estimation

The evaluation of the conditional spin-squeezing parameter requires the estimation of the collective spin
components’ averages and covariance matrix, as defined in equation (15). The covariance matrix contains
information regarding the variance of the spin components; the optimal spin-squeezing parameter is defined
as the variance in the optimal direction on the tangent plane, perpendicular to the average spin
⟨̂J⟩c =

(
⟨̂Jx⟩c, ⟨̂Jy⟩c, ⟨̂Jz⟩c

)
, normalized to the magnitude of such average spin. In the simulations, the

expectation values ⟨̂Ji (t)⟩c, and the covariance matrix, are referred to the fixed reference system integral to
the initial average spin vector along the x direction. In post-processing, therefore, the reference frame at each
time step should be passively rotated to the instantaneous average spin vector, after which the relevant
covariances appear in the new y− z plane. This operation is equivalent to the more efficient active rotation of
the average spin vector to the x direction, and the corresponding rotation of the covariance matrix. The
rotation matrixR necessary to perform such operation in the Euclidean space R3 is related to the rotation
operator R̂ in the collective Hilbert space which transforms the spin-coherent state |θ,ϕ⟩ on the Bloch sphere
to the initial state

∣∣π
2 ,0
〉
:

Rij⟨̂Jj⟩c
∣∣
θ,ϕ

= ⟨̂Ji ⟩c
∣∣
π/2,0

= ⟨R̂−1 Ĵi R̂⟩c
∣∣
θ,ϕ

(B.1)

from which one getsRiĵJj = R̂−1 Ĵi R̂ (repeated indexes are summed). The direction (θ,ϕ) is related to the
mean spin vector by equations (16) and the rotation operator is a composition of a rotation around the z and
y axes:

R̂= R̂y

(
π
2 − θ

)
R̂z (−ϕ) = e−i(π/2−θ)̂Jyeiϕ Ĵz . (B.2)

This operator allows to derive the proper transformation of the covariance matrix as

covij
(
Ĵ
′)∣∣∣

π/2,0
= Rikcovkl

(̂
J
)
Rjl

∣∣
θ,ϕ

. (B.3)

Once the covariance matrix is rotated to the fixed reference frame, we can then reduce it to the tangent
components y− z and calculate the minimal eigenvalue, from which we obtain the spin-squeezing parameter.

Appendix C. Analytical solution for the spin-squeezing parameter from the master
equation in the cavity removal approximation without feedback

In this appendix, we report the derivation of the tangential spin-squeezing parameter in the cavity removal
approximation in the absence of feedback.

In the cavity removal approximation described by equations (9), the mean spin vector always lies in the
x− z plane, if the initial state is a CSS along x, since there is no Hamiltonian term. Then, the minimal
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variance from (B.3) is on the rotated z direction and is related to the covariances in the original frame by the
following equation:

∆2 Ĵ⊥ =∆2 Ĵz sin
2 θ+∆2 Ĵx cos

2 θ− 2cov
(̂
Jz Ĵx
)
sinθ cosθ , (C.1)

where θ is defined by (16). From this equation, the tangential spin-squeezing parameter is derived as
ξ2 = (2/J)∆2 Ĵ⊥/C.

To determine ξ2, we study the evolution of the mean spin and the covariance components. A generic
observable Â, whose conditional expectation value is ⟨Â⟩c = Tr[ρ̂cÂ], obeys the following equation, derived
from the master equation (9):

d⟨Â⟩c = ⟨̂JzÂĴz − Ĵ2z Â/2− ÂĴ2z/2⟩c dτ +
√
η
(
⟨ÂĴz + ĴzÂ⟩c − 2⟨̂Jz⟩c⟨Â⟩c

)
dw , (C.2)

where we introduced the scaled time τ ≡ κ̃t and stochastic increment dw≡
√
κ̃dWt.

The initial condition for the mean spin is ⟨̂Jz(0)⟩c = ⟨̂Jy(0)⟩c = 0, ⟨̂Jx(0)⟩c = J, while the initial variances
are∆2Jz =∆2Jy = J/2,∆2Jx = 0. The off-diagonal covariances are initially zero, and we make our first
approximation in setting them to zero for every time:

cov
(̂
JîJj (τ)

)
c
=

1

2
⟨
(̂
JîJj + ĴĵJi

)
(τ)⟩c − ⟨̂Ji (τ)⟩c⟨̂Jj (τ)⟩c = 0 , (C.3)

for i ̸= j. This is equivalent to third order cumulant truncation, namely Gaussian approximation, and will be
confirmed by inspection of the simulation results.

The resulting coupled equations follow straightforwardly from the angular momentum commutation
relations and are reported here, where the ‘c’ subscript is understood for all expectation values:

d⟨̂Jx⟩=−1

2
⟨̂Jx⟩ dτ + 2

√
ηcov

(̂
Jx Ĵz
)
dw≈−1

2
⟨̂Jx⟩ dτ

d⟨̂Jy⟩=−1

2
⟨̂Jy⟩ dτ + 2

√
ηcov

(̂
Jy Ĵz
)
dw≈−1

2
⟨̂Jy⟩ dτ

d⟨̂Jz⟩= 2
√
η∆2 Ĵz dw

d⟨̂J2x⟩=−
(
⟨̂J2x⟩− ⟨̂J2y⟩

)
dτ +

√
η
(
⟨̂J2x Ĵz + Ĵz Ĵ

2
x⟩− 2⟨̂Jz⟩⟨̂J2x⟩

)
dw

d⟨̂J2y⟩=
(
⟨̂J2x⟩− ⟨̂J2y⟩

)
dτ +

√
η
(
⟨̂J2y Ĵz + Ĵz Ĵ

2
y⟩− 2⟨̂Jz⟩⟨̂J2y⟩

)
dw

d⟨̂J2z⟩= 2
√
η
(
⟨̂J3z⟩− ⟨̂Jz⟩⟨̂J2z⟩

)
dw. (C.4)

When considering the evolution of the variances, we again make use of third order cumulant
truncation [38, 39, 46]. This consists in a Gaussian approximation, which is expected to be valid in the
J→∞ limit and is later justified by comparison to numerical results. We then obtain the expressions in
equations (17), which take into account the initial conditions, resulting in equations (18) and (19). Notice
that due to our approximations, these expressions are unconditional. Besides∆2 Ĵx, which was not present
in [35, 36], the other expressions reduce to those in the literature in the small time limit [46].

The evolution of ⟨̂Jz⟩c is completely stochastic, and the statistical distribution of conditional values
P
(
⟨̂Jz(τ)⟩c

)
is thus constant in time and equivalent to the initial one. In the large J limit, this can be

approximated by equation (23), namely a Gaussian with zero mean and variance∆2 Ĵz(0) = J/2. The contrast
thus evolves as:

C (τ) =
⟨̂Jx (τ)⟩2 + ⟨̂Jy (τ)⟩2 + ⟨̂Jz (τ)⟩2c

J2
≈ e−τ , (C.5)

since∆2 Ĵz(0)/J2 → 0 in the J→∞ limit.
Both the equations for ⟨̂Jz⟩ and ⟨̂J2z⟩ evolve only stochastically, and one would presume that also

∆2 Ĵz = ⟨̂J2z⟩− ⟨̂Jz⟩2 evolves stochastically. However, this quantity evolves as

d∆2 Ĵz = d⟨̂J2z⟩− d
(
⟨̂Jz⟩2

)
= 2

√
η
(
⟨̂J3z⟩− ⟨̂Jz⟩⟨̂J2z⟩

)
dw− 4

√
η⟨̂Jz⟩∆2 Ĵz dw

− 4η
(
∆2 Ĵz

)2
dτ

= 2
√
η⟨̂J3z⟩C dw− 4η

(
∆2 Ĵz

)2
dτ (C.6)

where the last term stems from the Itô calculus rule dx= A dτ +B dw→ d( f [x]) = (Af ′[x]+
B2f ′ ′[x]/2)dτ +Bf ′[x] dw, where f is a function of x. ⟨̂J3z⟩C = ⟨̂J3z⟩− 3⟨̂Jz⟩⟨̂J2z⟩+ 2⟨̂Jz⟩3 is a third order
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cumulant that we set to zero in Gaussian approximation. The resulting expression, equation (21), is
consistent, for η= 1, large J and moderate times, with the one following heuristically from an approach
analogous to [35, 36], where one assumes that the atomic state preserves its minimal uncertainty product in
the y− z plane:∆2 Ĵz∆2 Ĵy = |⟨̂Jx⟩|2/4, yielding:

∆2 Ĵz (τ)

J/2
≈ e−τ

J(1− e−2τ )+ (1+ e−2τ )/2
. (C.7)

We now have all the ingredients for determining spin-squeezing as a function of time and of the ⟨̂Jz⟩c
projection, recalling its relation to cosθ in (16). Neglecting again the off-diagonal covariances, we obtain:

ξ2
(
τ, ⟨̂Jz⟩2c

)
=

eτ

1+ 2ηJτ

(
1− ⟨̂Jz⟩2c/|⟨̂J⟩|2

)
+ eτ

[
J
(
1− e−τ

)2
+

1

2

(
1− e−2τ

)] ⟨̂Jz⟩2c
|⟨̂J⟩|2

. (C.8)

We use the above expression in the main text to derive the scaling of the average spin-squeezing
parameter and to that end perform the J→∞ limit, in particular for the contrast. However, since this
expression should be valid even for large ⟨̂Jz⟩, in this case it can be more accurate to retain
C(τ) = e−τ + ⟨̂Jz(τ)⟩2c/J2. We also notice that performing the average of this more refined expression would
introduce corrections in terms of powers of eτ/2J, which do not affect the found scaling of the minimum.

Appendix D. Relation between scaling exponents of spin squeezing and optimal time

The relation α+β = 1 stems from a generic behavior of the spin-squeezing parameter for small times,
in which ξ2(t)≈ Q−δ + fQγ/Nϵ with Q∝ Nt. Indeed, the minimum of this function occurs at
ξ2m = (1+ δ/γ)(δ/fγ)δ/(γ+δ)N−δϵ/(γ+δ) for Q̄= (δ/fγ)1/(γ+δ)Nϵ/(γ+δ), implying α= δϵ/(γ+ δ) and
β = 1− ϵ/(γ+ δ). The relation α+β = 1 is thus valid if δ= 1, which holds in our cavity-removal case, as
can be seen in figure 5 in the bad-cavity regime and equation (11) for large N. Notice that for OAT, although
α= 2/3 as in our model, β = 2/3 instead of β = 1/3, since in that case δ= 2 and thus α+ 2β = 2.

Appendix E. Details of the numerical simulations

Given the stochasticity of the evolution due to the explicit dependence on the measurement outcome, each
solution of equation (5) represents a different unraveling, a particular trajectory of the conditional dynamics,
namely a model for a specific realization of an experiment. Therefore a particular configuration of physical
parameters g,κ,ε,N can be generically characterized only based on the behavior of the system averaged over
many trajectories. Each trajectory is found by integrating the conditional master equations, using the QuTiP
4.7 library [67, 68]. Since the initial state is pure, and we consider η= 1 in the simulations, we use the
ssesolve dynamic solver for the stochastic Schrödinger equation, which needs less computational resources
than the equivalent solver smesolve for master equations. This solver implements the implicit Milstein
method, which we found to be the most accurate at long times among those available, at a relatively
moderate cost. This method is indeed known for being suited to stiff dynamics, where very different time
scales are relevant in the evolution [85], such as in the full atom-cavity system that we consider.

The QuTiP library offers the possibility to automatically evolve different trajectories in parallel, profiting
of multi-core CPUs, and finally yielding the average of the observables. However, since the metrological
spin-squeezing parameter ξ2 is not associated to a single quantum operator, but it is the ratio of expectation
values of different operators, it cannot be evaluated directly by the QuTiP library during the evolution and
must be evaluated in post-processing from the expectation values of the relevant observables. Were we to
compute the spin-squeezing parameter from the average observables, we would obtain a result
corresponding to the unconditional evolution where no continuous measurement is executed and no
squeezing is generated. Therefore, ξ2 must be evaluated specifically for each trajectory, and its average and
standard deviation are then statistically estimated.

The number of trajectoriesM determines the precision of the results, and we estimate that
M= 100÷ 1000 is sufficient for our purposes. In order to have both a statistically relevant sample of
trajectories but also to speed up the computation we rely on parallel numerical methods, we employ the
parallel_map tool provided by QuTiP to solve simultaneously different trajectories, each parameterized by
independent seeds that initialize the stochastic increments of the SSE. This implementation is embarrassingly
parallel and the speed-up thus grows linearly with the number of available cores.

The computational complexity of the simulations is proportional to the total number of integration
steps. The minimal number of time-steps required to achieve a suitable level of accuracy for the integration
of the SSE is determined in order to guarantee the resolution of any process, without accidentally
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Appendix F. Data series included in the figures

Table F1. Simulation parameters for figures 6 and 9 and corresponding symbols.

Symbol ε/∆ κ/∆

0.002 0.002
0.01 0.01
0.02 0.02
0.009 0.006
0.02 0.01

Table F2. Simulation parameters for figures 7 and 8 and corresponding symbols.

Symbol ε/∆ κ/∆ g/∆

0.1 0.1 0.494
0.02 0.08 0.494
0.1 0.2 0.494
0.2 0.2 0.494

time-averaging any higher-frequency effect. We therefore compare the most relevant frequencies in the
master equations, including: the effective atomic shift n0 δω, the effective cavity shift N δω, the decay rate κ
and the driving strength ε. The time step is then chosen as dt= 2π/Rωmax, where the number R= 1000 has
been estimated to be sufficient to yield acceptable accuracy, that is compatibility with the true value,
extrapolated for dt→ 0, at the precision obtained given the chosen number of trajectoriesM= 1000. For the
minimal average spin-squeezing parameter, we noticed a residual time-step bias that we estimated as
δξ2m ≃ 1.5 · 10−2 and added to the uncertainty bars.

The other major contribution to computational complexity is given by the size of the quantum system:
the SME resolution would require the complete density matrix, therefore the memory usage would grow as
(dcda)2, where dc is the dimension of the photonic Hilbert space and da is the dimension of the atomic
Hilbert space. It is immediately clear that solving the SSE is beneficial because the memory requirement only
grows as dcda. As customary, the photonic Fock space is cut off at a maximum number of photons that we
expect to be relevant in the considered dynamics. Given the predictions of (3), we can estimate the expected
number of photons at the steady state from the initial parameters, thus also giving an estimate of the required
dimension to avoid a too small cut-off. Since for coherent photonic states in the uncoupled steady state we
would have∆2n̂= n0, to be more conservative for generic coupled dynamics, we set dc = int(3n0 + 6). The
atomic Hilbert space dimension in the initial qutrit representation would scale as da = 3N. This allows to
perform simulations with up to N≃ 10 atoms (not shown in this work) with standard resources. The
adiabatic removal of the excited state allows for reducing the dimension to da = 2N, allowing for the
simulation of up to N≃ 16. However, not considering atomic scattering gives us the possibility to restrict the
dynamics to the atomic Dicke sector with maximum eigenvalue J(J+ 1) of Ĵ2, with J= N/2, whose space
dimension is da = N+ 1. This allows us to simulate up to N = 200 atoms when considering the full SSE
corresponding to (5), and N = 20 000 after performing the adiabatic removal of the cavity.
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