
18 July 2024

ISTITUTO NAZIONALE DI RICERCA METROLOGICA
Repository Istituzionale

Setup for form measurements with chromatic confocal sensor / Giura, Andrea. - (2022).
Original

Setup for form measurements with chromatic confocal sensor

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic
description in the repository

Availability:
This version is available at: 11696/78619 since: 2024-06-13T14:54:27Z

Andrea Giura

Setup for form measurements with chromatic confocal sensor

T.R. 23/2022 June 2022

I.N.RI.M. TECHNICAL REPORT

2

Abstract
In the following RT is described the activity carried out in order to set up the 3 axis MOORE measuring
machine, situated in INRIM’s laboratory, to measure samples with the confocal chromatic sensor CHRocodile.

Riassunto
Nel presente RT si descrive l’attività svolta per predisporre la macchina di misura a tre assi MOORE, presente
nel laboratorio dell’INRIM, per effettuare misure di forma con il sensore confocale cromatico CHRocodile.

Index
Abstract ... 2

Riassunto ... 2

1 CHRocodile chromatic confocal sensor .. 3

1.1 Chromatic confocal technology ... 3

2 Movement of the measuring machine ... 3

2.1 STM 32 ... 4

2.1.1 Square wave generation ... 5

2.1.2 Control of the T parameter ... 6

2.2 Microcontroller – PC interface .. 7

2.2.1 Axis selection .. 7

2.2.2 Acceleration and deceleration ramps .. 8

3 Confocal probe ... 9

3.1 Calibration ... 9

3.2 Noise characterization ... 10

4 Stitching .. 11

5 C++ implementation ... 12

Example: axis movement ... 12

References ... 13

3

1 CHRocodile chromatic confocal sensor

1.1 Chromatic confocal technology
Incident white light is imaged through a chromatic lens to emit monochromatic light along the z-axis, when
an object is present in this colour field, a single wavelength is fixed to its surface and then reflected back to
the optical system. The backscattered beam passes through a filtering pinhole and is then acquired by a
spectrometer. The beam’s specific wavelength is calculated to precisely determine the position of the surface
in the measurement field.

The device consists of a control / interface system and a chromatic confocal probe for scanning the sample.

The control system interfaces with the PC via Ethernet connection, it is therefore possible, with a library
provided by the manufacturer, to implement the instrument reading in C ++ in order to save and process the
data coming from the instrument.

The library includes the main functions for managing the instrument, starting from data recovery, up to the
choice of the probe and the ambient parameters.

2 Movement of the measuring machine
To move the sample, it was decided to use the MOORE three-axis measuring machine, normally used for
measuring diametrical samples and optical scales. The axes of the machine are moved by three stepper
motors, controlled by three drivers that generate the waveforms necessary for the operation of the motors.
The control of the drivers is described in the next paragraph.

On the X axis is mounted a laser interferometer which provides, through the GPIB protocol, the absolute
position of the axis.

The reading of the position of the Z axis is relative to the sample being measured and is given by the confocal
instrument. The Z axis movement is only used to keep the probe in its range of use during the measurement.

4

2.1 STM 32
A microcontroller of the STM32 family, NUCLEO-F401 RE board, has been used to move the axes of the
measuring machine. The device has the function of creating the waveforms for the stepper motor driver:

• Enable / disable
• Direction back / fore
• Variable frequency square wave.

In the following schematic is reported the input configuration of the motors’ drivers.

The driver accepts TTL signals at its input, the microcontroller has outputs in CMOS logic (3.3V) 5V tolerant,
the enable and direction pins have therefore been configured as open-collector outputs, inserting a pull-up
resistor to move the output characteristic between 0 V and 5 V.

As for the square wave, the push-pull configuration was used to ensure a reasonable switching speed of the
GPIO, to optimize the project it would be possible to use a CMOS - TTL converter to make the most of the
push-pull outputs of the GPIO.

The pin configuration of the microcontroller is shown below:

5

2.1.1 Square wave generation
To generate the variable frequency square wave, the general pourpose timer (TIM1) of the microcontroller
was used in output compare mode, configuring the output pin of the TIM channel in toggle alternate function
mode, so that every time the counter reaches the CCR value (capture compare register), the output that
controls the step motor switches.

This allows to have a fixed frequency square wave output, which can be calculated based on the clock
frequency, the prescaler and the ARR (auto reload register) value.

𝑓𝑓 =
𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐

𝐴𝐴𝐴𝐴𝐴𝐴 × 𝑃𝑃𝑃𝑃𝑃𝑃
 ∀ 𝑃𝑃𝑃𝑃𝐴𝐴

To generate a variable frequency wave it is possible to dynamically act on the CCR value by increasing it each
time by a parameter T (instantaneous wave period); to do this, every time the counter reaches the CCR value,
an interrupt is generated and the relative ISR, which updates the CCR value to the next toggle value, is called.

𝑃𝑃𝑃𝑃𝐴𝐴𝑖𝑖 = 𝑃𝑃𝑃𝑃𝐴𝐴𝑖𝑖−1 + 𝑇𝑇𝑖𝑖

CCR is a 16-bit register, therefore also the variable T must be of type uint16_t, this allows to have
compatibility in the result of the sum even in case of overflow, in fact:

𝑃𝑃𝑃𝑃𝐴𝐴𝑖𝑖 > 216 → 𝑃𝑃𝑃𝑃𝐴𝐴𝑖𝑖 = 𝑃𝑃𝑃𝑃𝐴𝐴𝑖𝑖−1 + 𝑇𝑇𝑖𝑖 − 216

This means that, by setting the ARR value equal to 216, there will be a perfect match between the new CCR
value and the counter value, in this way the frequency will depend on the instantaneous value of the CCR
and therefore on the parameter T:

𝑓𝑓 =
𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐

𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑇𝑇

6

2.1.2 Control of the T parameter
Motor speed must be limited between a maximum and a minimum value, it is therefore appropriate to
define:

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 =
1

𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚
 → 𝑣𝑣𝑚𝑚𝑖𝑖𝑚𝑚

𝑇𝑇𝑚𝑚𝑖𝑖𝑚𝑚 =
1

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚
 → 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

The microcontroller receives commands via serial interface, the microcontroller USART has been configured
to receive data on 8 bits and generate an interrupt every time a byte is received.

The motor speed has been mapped to values between 1 and 255 (0 used for another function), where 1
indicates its minimum speed and 255 its maximum, it is possible to associate the corresponding value to T
with the following equation:

𝑓𝑓 =
1
𝑇𝑇

= (𝑥𝑥 − 1)
(𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚)

255 − 1
+ 𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚 = (𝑥𝑥 − 1)

� 1
𝑇𝑇𝑚𝑚𝑖𝑖𝑚𝑚

− 1
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

�

255 − 1
+

1
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

, 𝑥𝑥 ∈ [1, 255]

It must be taken into account that T is represented as an integer on 16 bits, since the TIM1 CCR is itself a 16-
bit register, this means that the formula must be modified to ensure that there are no data losses in the
divisions.

To do this it is sufficient to scale the numerator and denominator by a common factor, the optimal solution
would be scaling by (𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝑇𝑇𝑚𝑚𝑖𝑖𝑚𝑚) but this value cannot be represented in a 16 bit variable so the final
equation is only scaled by (𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚):

𝑇𝑇 =
1
𝑓𝑓

=
1

(𝑥𝑥 − 1)
� 1
𝑇𝑇𝑚𝑚𝑖𝑖𝑚𝑚

− 1
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

�
255− 1 + 1

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

∗
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
=

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

(𝑥𝑥 − 1)
�𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
𝑇𝑇𝑚𝑚𝑖𝑖𝑚𝑚

− 1�
255 − 1 + 1

7

2.2 Microcontroller – PC interface
For the movement of the axes it is necessary that the PC coordinates the motor control with the reading of
the position instrument present on the relative axis, to do this was used the RS232 protocol between the
micro and the PC.

The configuration of the STM32 USART is shown below:

The micro waits for each byte and generates an interrupt to manage the received command. The commands
for controlling the motor are listed below:

• L (lock): Upon receipt of the character, the micro blocks the motor

• U (unlock): Upon receipt of the character, the micro unlocks the motor

• F (forward): Upon receipt of the character, the micro sets the direction of the motor forward

• B (backward): Upon receipt of the character, the micro sets the direction of the motor backwards

• V (speed): Upon receipt of the character, the micro waits for the speed values until it receives a 0.

To dynamically set the motor speed it is therefore sufficient to send:

′𝑉𝑉′ → 𝑣𝑣1 → 𝑣𝑣2 → ⋯ → 𝑣𝑣𝑚𝑚 → 0

Sending zero does not block the motor, if the motor is not blocked, by sending the 'L' character after zero, it
will continue to move at minimum speed since TIM1 never ends the count.

2.2.1 Axis selection
The measurement with the confocal sensor involves the movement of the three axes of the MOORE machine,
the Y axis is controlled manually by the operator, the X and Z axes, on the other hand, are both managed by
the microcontroller. This means that the STM32 must be able to know whether the PC intends to move the
first or the second axis. To do this, it was decided to implement a potentially scalable solution to N axes.
Before each command, a character that identifies the axis that the micro must control is sent to the USART
(this does not apply to speed control).

For example for the movement of the X axis:

′𝑋𝑋𝑋𝑋′ → ′𝑋𝑋𝐹𝐹′ → ′𝑋𝑋𝑉𝑉′ → 𝑣𝑣1 → 𝑣𝑣2 → ⋯ → 𝑣𝑣𝑚𝑚 → 0 → ′𝑋𝑋𝐿𝐿′

8

2.2.2 Acceleration and deceleration ramps
To guarantee the correct movement of the motors it is necessary that the axis speed follows a linear trend,
both in acceleration and in deceleration, to do this the PC must calculate the instantaneous speed and send
it to the microcontroller.

This is done by the setVelocity function, which calculates the instantaneous speed based on the distance
travelled by the axis and the parameters set by the user.

�
𝑣𝑣 = 𝑎𝑎 ∗ 𝑡𝑡𝑡𝑡𝑎𝑎𝑣𝑣𝑡𝑡𝑡𝑡, 𝑠𝑠𝑡𝑡 𝑡𝑡𝑡𝑡𝑎𝑎𝑣𝑣 <

𝑑𝑑𝑑𝑑𝑠𝑠𝑡𝑡
2

 𝑣𝑣 = 𝑎𝑎 ∗ (𝑑𝑑𝑑𝑑𝑠𝑠𝑡𝑡 − 𝑡𝑡𝑡𝑡𝑎𝑎𝑣𝑣𝑡𝑡𝑡𝑡), 𝑠𝑠𝑡𝑡 𝑡𝑡𝑡𝑡𝑎𝑎𝑣𝑣 >
𝑑𝑑𝑑𝑑𝑠𝑠𝑡𝑡

2

After calculating the speed, the function limits the result to the maximum and minimum values to be sent to
the microcontroller (1,255), in this way the following speed curve is obtained.

In the figure a=2, dist=10, vmax=4 e travel=x;

9

3 Confocal probe
3.1 Calibration
For the calibration of the probe connected to the CHRocodile device, the reading of the sensor was compared
with the value of the X axis laser, mounting the probe parallel to the X axis. The range of the probe is 100 µm,
it was decided to carry out the calibration on 20 points equally spaced within the limits of the CHRocodile
probe range:

10

3.2 Noise characterization
By measuring a mirror, it is possible to characterize the noise of the confocal probe, the measurement was
carried out on 30 mm to collect a reasonable set of samples.

A moving mean of 10 values was also applied to the samples to see the difference of the fluctuations between
the averaged values and the raw samples, the figure shows the deviation from linearity in both cases:

DEVIATION FROM LINEARITY AND CONSECUTIVE SAMPLE DIFFERENCE

11

4 Stitching
The setup must be designed for shape measurements of samples with height greater than 100 µm, this means
that the confocal sensor would work outside its nominal range. To solve the problem, the Z axis is
programmed to bring the probe back into its working range whenever the upper or lower limit is reached.

Whenever this is done, it is necessary to correct the data coming from the sensor in order to take into account
the Z axis displacement, the measurement routine implemented takes care of all the calculations.

while (dis < 85 && dis > 15)
 {
 pos = las.readInstr();
 dis = CHR.readInstr();
 std::cout << "ok " << dis << std::endl;
 ost << pos << '\t' << dis + totalDisplacement << std::endl;
 Sleep(100); // a point every 100 ms

 if (GetKeyState('S') & 0x8000) // press S to end measure
 {
 end = true;
 break;
 }
 } // while in range
 asseX.stopMeasure(); // stop
 if (dis > 85)
 {
 asseY.setPosition(25);
 }
 else if (dis < 15)
 {
 asseY.setPosition(75);
 }
 if (!end) {
 Sleep(8000); // wait for y axis to slow down
 totalDisplacement += dis - CHR.readInstr();
 }

In the program the limit values are 15 µm and 85 µm, the return values are respectively 75 µm and 25 µm.

The figure shows how the sensor, using the Z axis stitching method, is able to measure the form of a gear
tooth (height difference > 250 µm), stitching points are represented in blue:

12

5 C++ implementation

Example: axis movement
int main()
{
 try
 {
 SimpleSerial ser;
 connectMicro(ser); // connessione per entrambi gli assi

 CHRocodile CHR;
 Laser las;

 Asse asseY((PosInstr*) &CHR, ser, 'Y');
 Asse asseX((PosInstr*) &las, ser, 'X');

 std::cout << asseX.getPosition() << "\t" << asseY.getPosition();
 asseY.setRamp(2.0f, 180, 200, 5, inv_mov);

 float to;
 std::cin >> to;
 asseY = to;

 std::cout << asseX.getPosition() << "\t" << asseY.getPosition();
 }
 catch (std::runtime_error & _e)
 {
 std::cout << "Terminating: " << _e.what() << std::endl;
 }
}

13

References
[0] Project: https://github.com/andeledea/TestSerial

[1] Simple serial library, dmicha16, https://github.com/dmicha16/simple_serial_port

[2] CHRocodileLibAPI reference, Precitec

[3] STM32 User manual

[4] Chromatic confocal technology, Polytec

https://github.com/andeledea/TestSerial
https://github.com/dmicha16/simple_serial_port

	Abstract
	Riassunto
	1 CHRocodile chromatic confocal sensor
	1.1 Chromatic confocal technology

	2 Movement of the measuring machine
	2.1 STM 32
	2.1.1 Square wave generation
	2.1.2 Control of the T parameter

	2.2 Microcontroller – PC interface
	2.2.1 Axis selection
	2.2.2 Acceleration and deceleration ramps

	3 Confocal probe
	3.1 Calibration
	3.2 Noise characterization

	4 Stitching
	5 C++ implementation
	Example: axis movement

	References

