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Tomography of memory engrams in
self-organizing nanowire connectomes

Gianluca Milano 1 , Alessandro Cultrera2, Luca Boarino1, Luca Callegaro 2 &
Carlo Ricciardi 3

Self-organizing memristive nanowire connectomes have been exploited for
physical (in materia) implementation of brain-inspired computing paradigms.
Despite having been shown that the emergent behavior relies on weight
plasticity at single junction/synapse level and on wiring plasticity involving
topological changes, a shift to multiterminal paradigms is needed to unveil
dynamics at the network level. Here, we report on tomographical evidence of
memory engrams (or memory traces) in nanowire connectomes, i.e., physi-
cochemical changes in biological neural substrates supposed to endow the
representation of experience stored in the brain. An experimental/modeling
approach shows that spatially correlated short-term plasticity effects can turn
into long-lasting engram memory patterns inherently related to network
topology inhomogeneities. The ability to exploit both encoding and con-
solidation of information on the same physical substrate would open radically
new perspectives for in materia computing, while offering to neuroscientists
an alternative platform to understand the role of memory in learning and
knowledge.

Recent breakthroughs in neuroscience rely on advancements in
understanding anatomy and working principles of the human brain
cerebral cortex bymeans of structural and functional imaging. For this
purpose, a variety of imaging technologies and mathematical analysis
methods have been developed, making possible advancements in
mapping the structural and functional connections of our brain,
known as connectome. While mapping at the microscale the entire
wiring diagram of the human brain composed of ≈1014–1015 synaptic
connections among neurons seems to be unattainable with current
technologies, connectomics and network neuroscience have offered a
quantitative framework for correlating the activity ofmacroscale brain
regions with specific functions1–3. Techniques such as Computed
Tomography (CT), Magnetic Resonance Imaging (MRI) and Electro-
encephalography (EEG) have been explored for macroscale recon-
struction of electrical activity and activation patterns in biological
brain networks, with the aim of understanding collective dynamics of

human cortical activity4–8. Even if the understanding of how our brain
works is far from being achieved, it is generally agreed that the ability
of our brain to store, retrieve, and process information is intrinsically
related to its short-term and long-term memory capabilities arising
from the interplay in between structure and function of its neuronal
circuits. While short-term memory effects contribute to information
processing and computational capability, long-lasting memory effects
are at the base of learning and storage of knowledge9. In this context,
the importance that the network topology has on emerging dynamics
and functionalities of brain networks has been highlighted10. Impor-
tantly, recent advances in neuroscience suggest thatmemory is stored
as learning-induced changes in multiple functionally connected net-
work areas, pointing out that small neuronal ensembles called engrams
are the basic unit of memory, rather than single synapses11–13.

In parallel with progresses in neuroscience, advances in artificial
neural networks promise to represent a radical change of paradigm in
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computing, paving the way to neuromorphic computing and artificial
intelligence14. Trying to fulfill the original goal of neuromorphic
computing15, recent trends rely on the implementation of neural net-
works on hardware platforms, driving the development of new circuit
elements to build artificial neuronal circuits that leverage physics to
enhance the computing capabilities16–20. With the aim of mimicking
biological neuronal circuits where the principle of self-organization
regulates both structure and functions, hardware architectures based
on self-organized memristive networks of nano objects have attracted
growing attention21–35. The emerging spatio-temporal dynamics of
these artificial connectomes, where an emerging behavior arises from
complexity similar to what happens in our brain, make these complex
networks versatile physical substrates for hardware implementation of
brain-inspired computing paradigms36–42. Despite on the one hand
devices basedondesignlessnanonetworks have beendemonstrated as
platforms for hardware implementation of advanced synaptic func-
tions and unconventional computing paradigms, the potentiality of
thesedevices by exploiting their functional connectivity still have tobe
explored. Indeed, self-organizing memristive networks require a radi-
cal change of paradigm in implementing neuromorphic functionalities
to take full advantage of their intrinsicmultiterminal capability beyond
the concept of two-terminal devices, posing at the same time new
challenges for characterizing and exploiting their emergent behavior
that requires a shift in thinking and designing neuromorphic circuits.
In this context, the crucial coexistence of short-term and long-term
plasticity (alternatively calledweight andwiring plasticity) on the same
physical substrate was just postulated or proved at single unit level
(nanowire and nanowire junction)21. While visualization of internal
dynamics has been proposed through simulations22,29,32,43, the forma-
tion of conductive pathways in nanonetworks has been experimentally
investigated by means of passive voltage contrast scanning electron
microscopy (SEM) imaging30,44, conductive atomic force measure-
ments (C-AFM)44 and thermographic images28. While SEM and C-AFM
scanning techniques investigate switching phenomena in nanonet-
works at the nano/microscale level, lock-in thermography allows to
obtain indirect information of main conductive pathways formed
where most of the power is dissipated. However, all these techniques
do not provide a direct and quantitative information on how the
macroscale conductivemapof the network, i.e. the internal state of the
memristive complex network, evolves under external stimulation.

In this work, we report on evidence of short-term plasticity and
long-term memory engrams as changes in the conductivity map of
multiterminal nanowire connectomes under electrical stimulation.
Going beyond the concept of two-terminal measurements con-
ventionally adopted to characterize memristive cells, we show
through a combined experimental and modeling approach that
electrical resistance tomography (ERT) allows the investigation of
spatially distributed changes in the conductivity distribution across
the NW network connectome. We show the tomographical evidence
of memory engram consolidation through the conversion of short-
term changes in the network conductivity map into spatially dis-
tributed long-lasting memory traces spanning the connectome. Fur-
thermore, the inherent relationship between spatio-temporal
activation patterns and network topology is investigated. By
demonstrating the coexistence of spatially distributed short-term
and long-term memory effects in the same neuromorphic device,
these results represent a radical step ahead towards the development
of physical computation that deeply exploits the spatially distributed
and temporal dependent signal activity across the nanonetwork,
where connection strengths are modulated by inputs history (such as
experience in the brain). Moreover, these solid-state devices can
represent alternative physical substrates for neuroscientists for
implementing new theoretical hypotheses about how memory is
formed and recalled in engrams, and how memory is involved with
learning in the formation of knowledge.

Results
Self-assembled NW connectomes
Self-organizing memristive NW networks were fabricated by drop-
casting Ag NWs in solution on 10 × 10mm2 quartz substrates to obtain
optically transparent and highly interconnected networks (Methods,
Fig. 1a and Supplementary Fig S1). NWdensity andNW junction density
were estimated to be ~105mm−2 and ~106mm−2, respectively (Supple-
mentary Note 1). The emergent memristive behavior of the network
arises from the interaction of a multitude of memristive NW junctions,
where the switchingmechanism relies either on the formation of an Ag
conductive filament across the insulating polyvinylpyrrolidone (PVP)
shell layer connecting themetallic cores under the actionof an applied
electric field (Fig. 1b) and/or on electrical-induced modification of the
network structure (Supplementary Note 2)21.

Spatio-temporal information processingwithmultiterminal NW
networks
A schematization of the experimental setup used for multiterminal
characterization of the emergent memristive behavior is reported in
Fig. 1c, where the NW network is connected to the experimental setup
by means of 16 needle probes (neuron terminals) wired to a switching
matrix that allows reconfigurable wiring configurations (Methods,
Supplementary Fig S2). An example of the network response to the
spatio-temporal stimulation pattern reported in Fig. 1d composed of
pulse trains (temporal domain) each applied to different pairs of
neuron terminals (spatial domain) is reported in Fig. 1e. The stimula-
tion of a pair of network terminals with a voltage pulse results in a
potentiation of the corresponding synaptic pathway with enhanced
effective conductance followedby a spontaneous relaxationwhere the
conductance progressively relaxes over time towards a new con-
ductance state (refer for example to pulse stimulation and network
response in black time traces in Fig. 1d, e, respectively). A comparison
of the output characteristics of NW networks with nominally identical
features is reported in Supplementary Fig S3. While spontaneous
relaxation, which gives rise to short-term synaptic plasticity effects, is
related to volatile switching effects in memristive network elements,
long-lasting effects rely on changes of the network topology21.
Importantly, temporally correlated pulses applied within a short time
interval result in a gradual increase of the effective synaptic pathway
conductance, emulating paired pulse facilitation (PPF) of biological
synapses by exploiting the competing effects of memory enhance-
ment and spontaneous decay (refer to red and blue time traces
in Fig. 1d, e, respectively). Because of the functional connectivity, the
system endows heterosynaptic plasticity, meaning that changes in the
synaptic pathway conductance can be observed not only in corre-
spondence with direct stimulation of the synaptic pathway (circled in
Fig. 1e), but also in non-directly stimulated synaptic pathways. In par-
ticular, the heterosynaptic effect depends on the spatial location of
neuron terminals, where the effective conductance of a synaptic
pathway is not strongly affected by stimulation of peripheral neuron
terminals (details in Supplementary Fig S4).

Mapping self-organizing connectomes
The above-discussed synaptic plasticity effects arise fromamemristive
reconfiguration of the network, where conductance dynamics in
between selected neuron terminals depend both on their spatial
location and on peculiar dynamics of the NW connectome under
spatio-temporal stimulation. In this context, two-terminal character-
istics of these multiterminal devices (as reported in Fig. 1d, e) are only
local manifestations of hidden changes in the spatio-temporal dis-
tribution of conductivity across the whole network connectome. We
experimentally unveil hidden network dynamics by electrical resis-
tance tomography, which allows a quantitative imaging of both local
conduction properties and emerging behavior of the NW connectome
at the macroscale. This non-scanning technique is based on the
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reconstruction of the spatial distribution of conductivity across the
network from boundary electrical measurements. The set of four-
terminal resistance measurements required for ERT reconstruction
was experimentally acquired through an adjacent pattern measure-
ment scheme (details of the measurement protocol in Supplementary
Note 3)45,46, by injecting current in between a pair of adjacent terminals
through a constant applied voltage bias (Vsource) while measuring
voltage across remaining pairs of adjacent terminals (Vsense), as sche-
matized in Fig. 2a (details in Methods, Supplementary Fig S5). While
maximizing the signal-to-noise ratio, the measurement protocol pre-
vents the onset of sample alterations (Supplementary Fig S6)45. Simu-
lations were performed by modeling the NW network as a memristive
grid-graph36,47 (details in Methods). This modeling approach relies on
the approximation of homogeneous and high-density NWnetwork as a
continuous medium, followed by parcellation of the 2D domain and
approximation as a regular grid of memristive devices, as schematized

in Fig. 2b (details in Supplementary Note 4 and Supplementary
Table 1). Here, each memristive edge of the grid-graph represents the
memristive interaction among different areas (nodes) of the network
composed of a multitude of NWs. It is worth mentioning that a similar
approach based on parcellation is exploited in neuroscience where,
due to the difficulties of mapping the entire connectome at the single
synapse level, the graph representation of the brain connectome relies
on describing entire brain regions as nodes, where edges provide
connections in between these regions3.

Transresistance patterns, consisting in a set of n(n − 3) measure-
ments (i.e., 208measurementswithn= 16 terminals), of an experimental
and grid-graph modeled nearly homogeneous NW network in the pris-
tine state are reported in Fig. 2c. Here, patterns are compared also with
theones simulated for a perfectly homogeneous andcontinuous sample
(details in Supplementary Fig S7). Despite themicroscopic structure and
randomicity of the NW network, main features of the experimental
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Fig. 1 | Multiterminal memristive NW networks for spatio-temporal informa-
tion processing. a Representative SEM image of an Ag NW network (scale bar, 5
μm). b Detailed SEM image of the intersection in between two nanowires (NW
junction) acting as an electrochemical memristive cell (scale bar, 100nm) and
schematization of its working principles. The switchingmechanism is related to the
formation/rupture of a metallic conductive filament across the insulating PVP NW
shell layer connecting the two Ag NW cores under the action of the applied electric
field. c Schematization of the multiterminal memristive NW network device and
control system. A 10 × 10mm2 NWnetwork is contacted bymeans of needle probes
and connected to a switching matrix driven by a control unit to perform multi-
terminal measurements in between selected contacts acting as neuron terminals.
The effective conductance in between two neuron terminals represent the weight

of the corresponding synaptic pathway.d Example of a spatio-temporal stimulation
pattern composed of different pulse trains (temporal domain) (pulses of 5 V,
200ms) each applied to different pairs of neuron terminals (spatial domain) and
e corresponding evolution of the effective conductance of synaptic pathways. In
(d), each channel corresponds to the stimulation of the pair of terminals in par-
entheses. When not stimulated, electrode terminals were leftfloating (dashed line).
In (e), circled areas show synaptic plasticity changes related to direct stimulation of
the corresponding synaptic pathway, where temporally correlated pulses applied
within a short interval result in paired pulse facilitation (PPF). The effective con-
ductance of each pair of neuron terminals was sequentially measured with a read
voltage of 10mV. During stimulation pulses, the conductance of the directly sti-
mulated synaptic pathway was continuously recorded.
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transresistance pattern obtained on a high density and nearly homo-
geneous NW network are in good agreement with the pattern obtained
from the grid-graph model. Also, the good agreement of main features
with the simulated homogeneous sample’s pattern supports the
approximation of the high density and homogeneous NW network as a
2D (continuous) memristive material at the nanoscale.

The transresistance pattern canbe rearranged to represent partof
the (indefinite) impedance matrix Z that endows the electrical repre-
sentation of the multiterminal network (Supplementary Fig S8).
Together with the sample’s geometry and position of network term-
inals, the impedance matrix is then passed as input for ERT recon-
struction of the network conductivity map by means of optimization
techniques (details in Methods). This involves solving an inverse pro-
blem, i.e., determining the conductivity map corresponding to a given
impedancematrix, where the spatial resolution relies on the amount of
available boundary information. In the case of the here reported 16-
contacts ERT setup, the spatial resolution can be considered in the
order of the contact distance (≈2mm) (details of spatial resolution and
traceability in Supplementary Note 5 and Supplementary Fig S9). Note
that this approach shares similar basic principles exploited for solving
the inverse problem of EEG, where the location of brain areas gen-
erating neuronal activity can be inferred from EEG potential mea-
surements on the scalp7. Fig. 2d, e reports impedance matrices
(obtained from measurement patterns reported in Fig. 2c) and corre-
sponding conductivity maps of an experimental sample and grid-

graph modeled NW network, respectively (parameters of the grid-
graph modeling were retrieved from interpolation of experimental
data, details in Supplementary Fig S10). Since the considered NW
networks fulfill the reciprocity theorem of linear passive electrical
networks, matrices Z are symmetric (Supplementary Note 6, Supple-
mentary Fig S11). A substantially homogeneous conductivity map was
observed in the case of the experimental NW network, in good
agreement with results obtained from ERT reconstruction of the grid-
graph model. A quantitative comparison of the conductivity distribu-
tion of ERT map pixels is reported in Fig. 2f, where it is possible to
observe, despite the high uniformity of the NW network, a wider dis-
tributionof conductivity values in the experimental networkdue to the
presence of local variations of conductivity related to the randomicity
of the deposition process. Further details on long-term stability of
neuromorphic NW networks are reported in Supplementary Fig S12.

Tomography of memorizing-forgetting effects
The emergent dynamicsof the functional synaptic conductivitymapof
theNWconnectomeunder spatio-temporal stimulations is assessedby
acquiring the impedance matrices of the system over time, as con-
ceptually schematized in Fig. 3a. Then, the acquired dataset is used as
input for the ERT reconstruction algorithm to map the dynamic evo-
lution of the network conductivity map (Methods). Figure 3b shows a
typical experimental temporal evolution of the synaptic effective
conductance in between a pair of neuron terminals (6 and 15) in the
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Fig. 2 | Experimental and modeling electrical imaging of homogeneous NW
networks. a Schematic representation of the adjacent measurement protocol
where a source voltage (Vsource) is applied between apair of adjacent terminals (e.g.,
terminals 1–2) while measuring the voltage (Vsense) difference across a pair of dif-
ferent terminals (e.g., terminals 3–4). For each fixed pair of source terminals, the
voltage drop is measured in between other adjacent pair of terminals with a
counterclockwise sequential scheme (13 sense configurations, avoiding 2-terminals
and 3-terminal measurements). The same measurement scheme is repeated by
shifting counterclockwise the source adjacent pair of terminals (16 source config-
urations), obtaining a set of 13 × 16 = 208 transresistance values. b Grid-graph
model where the NW network is represented by a grid-graph with random diag-
onals where graph nodes are connected by memristive edges. The network elec-
trode terminals (black nodes) are placed according to the geometry of the

experimental setup. cTransresistancepatterns obtainedwith the adjacent protocol
scheme of an experimental NW network, a grid-graph modeled network and a
simulated homogeneous sample with amedian conductivity of 15.7mS. The source
configuration is labeled at the top. Impedance matrices (obtained from measure-
ment pattern reported in panel c) and corresponding conductivity maps obtained
by ERT reconstructions from (d) experimental data and (e). grid-graphmodeling of
NW networks. fQuantitative comparison of conductivity values obtained from ERT
reconstruction of experimental data and grid-graph modeling, where box plots
represent the distributionof conductivity pixels inmaps reported in (d, e).Midlines
represent median values, squares the mean values, boxes the 25th and 75th per-
centiles, whiskers the 10th and 90th percentiles, and lines the maximum and
minimum values.
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homogeneous network, where stimulation was tailored to induce
short-term synaptic plasticity (Supplementary Note 7). Under these
circumstances, the effective conductance shows potentiation with an
increase of the effective conductance during direct stimulation of
selected terminals with a voltage pulse and subsequent spontaneous
relaxation after the end of stimulation towards the pristine ground
state. As it canbeobserved, the effective conductance time traceof the

NW network working in the short-term memory regime can be well
interpolated by the grid-graph model36,47 where memristive dynamics
are regulated through a potentiation-depression rate balance
equation48 (details in Methods and Supplementary Note 8). At the
same time, impedance matrices were acquired over time in both
experiment and grid-graph modeling. Figure 3c reports the experi-
mental differential impedancematricesΔZ calculated as thedifference
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of entries of Zi at a selected timestep ti and entries of Z0 at t0 (i.e., the
pre-stimulation impedance matrix), while Fig. 3d shows the corre-
sponding reconstructed differential conductivity maps (details in
Methods). Dynamics of the experimental effective conductance,
impedance matrices and differential conductivity maps evolution are
reported in Supplementary Movie 1. Figure 3e shows the spatio-
temporal evolution of conductance by means of the grid-graph mod-
eling, Fig. 3f the differential impedance matrices obtained from
modeling and Fig. 3g the corresponding reconstructed differential
conductivity maps. Dynamics of simulated effective conductance,
grid-graph modeling, impedance matrices and differential con-
ductivity maps are reported in Supplementary Movie 2. Differential
impedance matrices after stimulation show the emergence of peculiar
features that reflect local changes of conductivity across the NW net-
work, where main emergent features of the experimental matrix are
captured by the matrix obtained from the grid-graph model (refer to
panels c and f of Fig. 3). The peculiar features emerging in ΔZ after
stimulation reflects the emergence of an activation pattern (memory
trace)with enhanced conductivity in thenetwork connectome that can
be observed in the experimental and simulated topographical recon-
struction of the differential conductivity maps t1 � t0. Note that the
growth dynamics of thememory trace is regulated by the local electric
potential and proceeds from the stimulated terminals, as detailed in
Supplementary Fig S13. Simulations and experiments reported in Fig. 3
suggest that electrical stimulationdoes not result only in the formation
of a single pathway with enhanced conductivity in correspondence
with the shortest path connecting the stimulated contacts. Conversely,
activation patterns that are distributed across the network clearly arise
due to the occurrence of conductive pathways withmultiple branches.
These results are in accordance with experimental studies by passive
voltage contrast SEM imaging30 and with simulations reported in
Supplementary Fig S14, both showing the formation at micro/nanos-
cale of conductive pathways composed of multiple branches. After
stimulation, the impedance matrix of the system tends to relax to the
ground state due to the short-term memory of the network con-
nectome, as testified by the progressive reduction of the differential
transresistance values over time in both experimental and simulated
data. The fading memory (relaxation) of transresistance values of the
system reflects the progressive vanishing of the memory trace, as can
be observed by tomographic reconstruction of differential con-
ductivity maps over time for t > t1, where the initial distribution of
conductivity is nearly restored at t = t4. Results show qualitative
agreement between experimental and simulated conductivity maps
and their spatio-temporal dynamics when high density and nearly
homogeneous NW networks are considered.

Short-term plasticity, memory consolidation and network
topology
While high-density networks with nearly homogeneous distribution
of NWs can be modeled as a continuous and uniform memristive

2D-like material, a complex emergent behavior arises in non-
homogeneous connectomes, due to the interplay in between emer-
gent functionalities and the peculiar network structure. An example
of the conductivity map of a non-homogeneous NW network in its
pristine state is reported in Fig. 4a, showing higher conductivity at the
bottom-left corner (Supplementary Fig S15). Nonuniform con-
ductivity across the network in pristine state is inherently related to
the local density and topology of intersecting NWs (Supplementary
Note 9)46. The emergent behavior of the non-homogenous con-
nectomewas assessed bymeans of voltage pulse stimulations applied
in between selected neuron terminals (terminals 6 and 13). While
stimulationwith a low voltage pulse results in a subsequent relaxation
of the network towards the ground state over time (Fig. 4b), stimu-
lation with higher voltage pulses results in a stronger potentiation
characterized by long-lasting changes in the effective conductance in
between stimulated terminals (Fig. 4c). Figure 4d, e reports differ-
ential impedance matrices and corresponding reconstructed differ-
ential conductivity maps, respectively, showing the evolution of the
non-homogeneous connectome after stimulation with 1 V pulse
(Supplementary Movie 3). Differential conductivity maps after sti-
mulation (tA1 � tA0) evidenced the formation of enhanced con-
ductivity areas near stimulating terminals, with a larger stimulated
area near terminal 6 with respect to terminal 13. In this case, the
asymmetryof the spatial activation pattern is inherently related to the
network topology. Indeed, the higher conductivity in the pristine
state of the area near terminal 6 results in a nearly equipotential area
surrounding terminal 6 during stimulation, with the voltage drop that
occurs mainly at the boundaries in between this area (that act as a
nearly equipotential virtual electrode) and the neighbor areas with a
lower conductive pristine state (details in Supplementary Fig S16).
Thus, the non-homogeneous initial distribution of conductivity
across the network related to its topology is responsible for a peculiar
redistribution of the electrical potential that drives switching events
across the network during electrical stimulation, resulting in the
formation of peculiar morphologies of spatio-temporal memory tra-
ces. Reflecting the relaxation towards the ground state of both the
two-terminal effective conductivity and of the differential impedance
matrices, a progressive vanishing of these activation patterns can be
observed in the connectome over time due to short-term memory
characteristics of the network. Differential impedance matrices and
corresponding reconstructed differential conductivity maps after
stimulation with a 2 V pulse are reported in Fig. 4f and g, respectively
(SupplementaryMovie 4). As can be observed, a stronger stimulation
results in a larger activation pattern across the connectome with
enhanced conductivity with respect to the activation pattern gener-
ated by stimulation with a lower amplitude pulse. In this case, long-
lasting changes in impedance matrices result in activation areas
across the reconstructed conductivity map that hardly relax over
time, indicating that the transition from short-term to long-term
memory can be achieved through appropriate electrical stimulations.

Fig. 3 | Mapping dynamic evolution of activation patterns in a homogeneous
memristive nanowire network connectome. a Conceptual schematic repre-
sentation of time-dependent acquisition of impedance matrices in multiterminal
memristive networks during spatio-temporal stimulation of the system for map-
ping the spatio-temporal evolution of network conductivity. b Experimental and
simulated evolution of the effective conductance in between a pair of stimulated
terminals under direct stimulation followed by spontaneous relaxation. Potentia-
tion was performed by applying a voltage pulse (3 V, 10 s) in between terminals 6
and 15, while the relaxationwasmonitoredover time inbetween the same terminals
with a read voltage of 10mV. The inset shows the position of the stimulated
terminals. c Experimental differential impedance matrices acquired over time
(head and tail levels have been assigned to maximum and minimum levels,
respectively, for better data visualization) and (d) corresponding experimental

differential conductivity maps by ERT reconstruction of the NW network during
stimulation reported in (b). e Evolution of the memristive network by grid-graph
modeling (f) corresponding simulated differential impedance matrices obtained
from the grid-graph model and (g) corresponding simulated differential con-
ductivity maps by ERT reconstruction during stimulation reported in panel b. Dif-
ferential impedance matrices were obtained by measuring the differential
transresistance values (ΔZ) between a selected timestamp and t0 (before stimula-
tion).Differential conductivitymapswere obtainedbyevaluating the local variation
of conductivity (ΔZ) through differential map reconstruction. Differential matrices
and conductivity maps correspond to timesteps labeled in (b). Experimental and
modeled ERT map reconstruction evidenced the emergence of a conductive
pathway connecting stimulated terminals that progressively vanishes during
spontaneous relaxation.
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Fig. 4 | Short-term and long-term memory effects in the NW network con-
nectome. a Experimental conductivity map of a non-homogenous NW network,
showing a higher conductivity area at the bottom-left corner. Experimental evo-
lutionof the two-terminal effective conductanceof the non-homogeneous network
in between a pair of terminals under direct stimulation followed by spontaneous
relaxation, where stimulation was with a 10 s voltage pulse of amplitude (b) 1 V and
(c) 2 V. The relaxationwasmonitored over time in between the same terminals with
a read voltage of 10mV. Neuron terminals selected for stimulation (6 and 13) are
highlighted in insets of (b, c). d Experimental differential impedance matrices and

(e) corresponding reconstructed conductivity maps of the non-homogeneous
connectome after 1 V pulse stimulation, showing a progressive vanishing of the
activation pattern induced by stimulation due to short-term memory effects.
f Experimental differential impedance matrices and (g) corresponding recon-
structed conductivity maps of the non-homogeneous connectome after 2 V pulse
stimulation reported in (c) showing long-lasting changes in the connectome due to
long-termmemory effects. Differential conductivity maps show that the activation
pattern is inherently related to the pristine conductivity map of the non-
homogeneous network.
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Discussion
Results show that the emergent behavior of the NW network con-
nectome arises from stimulation-induced spatio-temporal activation
patterns related to the interplay in between the spatial location of
stimulation, its temporal sequence, and the network topology. The
internal memristive dynamics of the network connectome can be
inferred through the temporal evolution of the impedance matrix of
the system by means of multiterminal ERT mapping. Differently from
other techniques for direct visualization of conductive pathways in
self-organizing systems, ERT provides quantitative information on
conductivity changes across the entire neuromorphic network (a
comparison of measurand, spatial resolution, scanning area and
acquisition time of ERT with other characterization techniques is
reported in Supplementary Table 2). This is in analogy to brain map-
ping techniques that provide information on the connectivity of brain
areas, without single synapse level resolution (a comparison with the
effective resolution of brain mapping techniques is reported in Sup-
plementary Table 3). In this context, is it worth mentioning that an
approach based on ERT can be explored in a wide range of multi-
terminal neuromorphic devices with different number and position of
contacts, where both spatial and temporal resolution can be improved
by further optimizing measurement protocols and reconstruction
algorithms (Supplementary Note 10).

In agreementwith grid-graphmodeling, the emergent behavior of
high-density and nearly homogeneous NW networks shows memory
traces that, once appropriately stimulated, progressively restore the
initial spatial distribution of conductivity across the network con-
nectome. Instead, a topology-related transition from short-term to
long-lasting changes in the network connectome can be induced by
means of appropriate stimulations, as revealed by considering non-
homogeneous networks. The emergent behavior of the network
results from the interplay in between (i) the peculiar spatio-temporal
distribution of the electrical potential during stimulation—that
depends on the initial conductivitymap (i.e., on the network topology)
that locally drives switching events—and (ii) the different switching
properties of network areaswithdifferent local densities ofNWs. Long-
lasting activation patterns are expected in areas that experience
enhanced voltage drops that can cause both (i) the formation of non-
volatile filaments in highly stimulated memristive network elements,
and (ii) voltage-induced local structural changes in the network
topology (wiring or structural plasticity)21.

In this context, the functional synaptic conductivity map of the
NW connectome represents a memory state that depends on the
history of spatial and temporal sequences of stimulation. The co-
existence of long-term memory and memorizing-forgetting effects
paves the way to the imprinting of cognitive information on a phy-
sical substrate in the form of artificial engrams, thus emulating bio-
logical engrams that endow the representation of experience stored
in the brain11. Such a feature can represent a new paradigm for phy-
sical reservoir computing, since only short-term memory effects
were currently exploited49,50 (for this purpose, the repeatability of
network outputs under the same input was demonstrated in NW
networks operating in the short-term regime in ref. 36). Besides,
spatially distributed short-term and long-term engram memory in
the same physical substrate can lead to new unconventional com-
puting paradigms able to process time-dependent information
through short-term memory, while learning from experience and
storing information thanks to long-lasting engram memory. These
computing paradigms can explore the dependence of the non-linear
dynamic evolution of the network connectome where activation
patterns rely on the spatial location and temporal sequence of mul-
tiple input signals. In perspective, this can enable the realization of
low-cost intelligent systems able to interact with the environment by
receiving and responding to external stimulations, adapting their

internal functional connectivity map to enable distribution, proces-
sing, and storage of information. In this framework, our results sug-
gest that the network topology can be tailored to control emergent
functionalities of self-organizing system, thus representing a key
aspect for the hardware-software codesign of neuromorphic chips
based on self-assembled nanonetworks. Furthermore, the knowledge
over time of the conductivitymap canbe exploited, in perspective, as
electrical transfer function to model the system’s outputs for each
possible input. This allows not only to quantitatively predict the
input/output relation of arbitrarily placed input/output contacts, but
also provides information on the electric field and current density
distribution over the network under arbitrary external electrical sti-
mulations. Therefore, the integration of the electrical transfer func-
tion of these multiterminal devices in circuit simulators and control
systems can represent a turning point for the optimized design,
realization and programming of neuromorphic chips based on self-
organizing nanoarchitectures.

Finally, such a solid-state device would represent an alternative
platform for neuroscientists to implement their new theoretical
hypotheses about howmemory is formed and recalled in engrams, and
howmemory is involved with learning in the formation of knowledge.
The reverse-engineering of how NW networks emulate synaptic func-
tionalities and how their topology affects the computational cap-
abilities and engram representations may ultimately give new insights
for understanding howbiological brain networks work, retargeting the
original goal of neuromorphic electronics.

Methods
Ag NW network fabrication
Memristive NW networks were realized by means of a drop-casting
technique21,36, by using AgNWswith a diameter of 115 nm and length of
20–50 μm in isopropyl suspension (from Sigma-Aldrich) on a 10 × 10
mm2 quartz substrate. In this work, the concentration of NWs in sus-
pension and the drop volume was controlled to realize NW networks
with an arealmass density (AMD) in the range ~99–136mgm–2. TheNW
networkmorphologywas characterizedbymeans of scanning electron
microscopy (SEM; FEI Inspect F). Chemical and structural character-
ization of Ag NWs are reported in our previous work21, showing the
presence of a PVP insulating shell layer of ~1–2 nm surrounding theNW
core. Besides its role as active material for resistive switching, the PVP
shell layer prevents direct contact of the Ag inner core with the sur-
rounding atmosphere, contributing to its chemical stability.

Experimental setup for multiterminal characterization
Multiterminal electrical measurements were performed by means of a
Keysight 34980A multifunction unit loaded with a Keysight
34933 switch matrix module, a Keithley 2602B source-meter and an
Agilent 34461A digital multimeter. Multiterminal electrical character-
ization were performed by contacting the samples with spring-
mounted needle probes through a custom fixture, as described in
previous works (details in Supplementary Fig S2)45,46,51. Needle probes
have a contact section of about 40 μm in diameter, ensuring reliable
contacts to NW networks with AMD falling within the range
60–181mg/m246. The impedancematrix, electrically describing theNW
network internal state, was acquired according to the so-called adja-
cent measurement protocol with constant voltage excitation that
maximizes the signal-to-noise ratio in the measurements, while pre-
venting electrical alterations of the NW network sample, as detailed in
our previous work (details in Supplementary Note 3)45. For each
measurement configuration represented by a pair of adjacent source
terminals ði, jÞ and a pair of adjacent sense terminals ðk, lÞ, the trans-
resistance is calculated as

Ri,j;k:l = V sense; k,l=Isource; i,j ð1Þ
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where Isource; i,j is the measured current flowing in between adjacent
source terminals when a voltage bias V source; i,j is applied, while
V sense; k,l is the voltage dropmeasured across adjacent sense terminals.
Measurements were performed in four-terminal configuration (trans-
resistance) thus excluding the effect of contact resistance (i.e.,
measurements in two-terminal and three-terminal configurations
where terminals are shared with the source and/or sense terminal
pairs are not considered). For eachmeasurement configuration i, j; k, l,
the transresistance value was the average of the forward and the
reverse measurement configuration (defined by reversing the source
and sensing polarity) to minimize thermoelectric effects (stray
measurement offset). A measurement pattern (208 configurations)
was performed in about 40 s. Multiterminal stimulation of the
memristive NW network was performed by sequentially applying
voltage pulses in between different pairs of electrical contacts. When
not stimulated, electrical contacts were left floating. Spatio-temporal
evolutionofmemristiveNWnetworks under electrical stimulationwith
a spatio-temporal pattern was monitored by sequentially reading the
impedance matrix of the system over time, while sequentially also
monitoring the evolution of the resistance in between pairs of selected
terminals. All measurements were performed in ambient air at
controlled room temperature (23 °C ±0.5 °C).

Grid-graph modeling
The homogeneous NW network deposited on a 10 × 10 mm2 quartz
substrate wasmodeled as a grid graph (21 × 21) nodes withmemristive
edges (pixel size of 0.05mm), where contact terminal nodes are
positioned according to the experimental sample geometry (details in
Supplementary Note 4). Spatial anisotropy effects were avoided by
introducing randomly oriented memristive diagonal edges. The cur-
rent flow is regulated by Kirchhoff’s law, whilememristive dynamics of
graph edges is regulated by a physics-based potentiation-depression
rate-balance equation (details in Supplementary Note 9)36,47,48. Grid-
graphmodeling was performed in Python by exploiting the NetworkX
package.

Tomographical map reconstruction
Conductivitymapsof theNWnetwork sampleswereobtained fromthe
ERT multiterminal measurements by means of tomographical image
reconstruction. ERT reconstruction is an ill-posed inverse problem
prone to measurement noise in the input data that requires regular-
ization. In our approach, the tomographic reconstruction through the
solution of the inverse problem is based on the minimization of the
regularized functional:

σ = argmin jjRcalc ςð Þ � Rjj2 +ΩjjL ςð Þjj2
� �

ð2Þ

where R is the input vector, Rcalc ςð Þ is a vector of transresistances
calculated by the solver using the guess conductivity distribution ς,
and ‖•‖ is the Euclidean norm operator. Ω is the regularization para-
meter, a scalar used to set the amount of regularization ‖L(ς)‖ com-
puted using the EIDORS’ “Laplace_prior” function L.

To solve the problem described by Eq. (2) we applied numerical
methods, implementing a Gauss-Newton solver within EIDORS v3. The
numerical solution of (2) wasbasedona Finite ElementModel (FEM) of
the sample, having 9554 elements, including information about the
position of the 16 contacts, the excitation voltage value, and the
measurements’ sequence corresponding to the implemented adjacent
measurement protocol. The FEMwas generated as a MATLAB structure
(Supplementary Fig S17), then passed to the EIDORS solver. The
Gauss–Newton solver can be configured to work in both “static” and
“differential” modes. Static mode allows to retrieve absolute maps
from single sets on ERT multiterminal measurements, while differ-
ential mode allows to retrieve the map of the difference between two
different ERT transresistance measurements acquired at different

timesteps. In the case of differential maps both R and Rcalc ςð Þ are
defined as the difference between measured or calculated transresis-
tances at two different timesteps.

The amount of regularization Ω was selected by minimizing the
differential map between two nominally identical sets of ERT mea-
surements obtained with the sample in the pristine state. In this way
Ω was large enough to damp the measurement noise, while any
substantial over smoothing of the solution was avoided. The FEM
conductivity maps were exported on a square grid of 100 × 100
pixels, which were enough to avoid artefacts due to the interpolation
with the FEM structure. Note that from the point of view of ERT, the
large area NW network can be considered as a two-dimensional
material without a defined thickness. In this context, the conductivity
(local property of the network) and the conductance (property of the
network defined at 2 or more terminals) are here represented in the
same unit (S).

Data availability
The data that support the findings of this study are available on
Zenodo (https://doi.org/10.5281/zenodo.8208381).
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