Dy³⁺-doped phosphate glass optical fibers for 577 nm wavelength fiber lasers (Conference Presentation)

Diego Pugliese,¹ Martha Segura,² Nadia Giovanna Boetti,³ Joris Lousteau,⁴ Guido Perrone,¹ Davide Janner,¹ Sami Slimi,² Pavel A. Loiko,⁵ Mailyn Ceballos,² Xavier Mateos²

¹Politecnico di Torino (Italy)

²Univ. Rovira i Virgili (Spain)

³LINKS Foundation (Italy)

⁴*Politecnico di Milano (Italy)*

⁵Univ. de Caen Normandie (France)

Proceedings Volume 12573, Specialty Optical Fibres; 125730A (2023) https://doi.org/10.1117/12.2665269

Event: SPIE Optics + Optoelectronics, 2023, Prague, Czech Republic

Abstract

Lasers emitting in the visible find applications in biology and medicine. Considering the success of near-infrared fiber lasers, the possibility to optically pump rare-earth-doped fibers in the blue to directly obtain visible emission is attractive. The recent progress in the field of GaN-based blue laser diodes offers new scopes. Dy^{3+} -doped materials have received much interest because of their intense yellow emission originating from the ${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$ transition. An involvement of a glass matrix benefiting from enhanced thermo-mechanical properties would ease diode pumping. We report on the synthesis of a series of novel phosphate glasses in the system P₂O₅-Al₂O₃–BaO-K₂O doped with Dy₂O₃. The Dy³⁺ concentrations were 0.05, 0.21, 0.83 and 2.5 [10²⁰ ions/cm³]. The glasses were synthesized by the standard melt-quenching technique and thoroughly characterized in their physical, thermo-mechanical and optical properties. A Dy³⁺-doped optical fiber was drawn by preform drawing from the developed glasses, with the preform being obtained by rod-in tube technique, combining a cast core and an extruded cladding. Preliminary emission results in the visible from the fabricated fiber will be reported.