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ABSTRACT Supercapacitors are becoming increasingly important storage system components. To 
effectively control their terminal voltage, even in real time, numerous circuit models capable of faithfully 
simulating their behavior in energy systems and various applications are being explored. The three-branch 
supercapacitor model appears to be a good compromise between simplicity and accuracy. Typically, this 
model lacks accuracy in dynamic cycling and long stand-by periods. In this study, a new model identification 
method based on the state equations of the circuit is described and tested on a 400 F supercapacitor, and the 
obtained results are validated by measurements. Such an approach, suitably optimized, provides good 
agreement with the measurements, with discrepancies below 50 mV even in repeated cycles. In the static 
identification, after 90 minutes of self-discharge, the discrepancy was approximately 5 mV. The study also 
discusses the sensitivity of the model output to the circuit parameters, which is useful for choosing the 
appropriate timespan for parameter optimization and introduces variable leakage resistance and a method for 
its determination. Through this parameter, good agreement with the measurements is observed during the 
long self-discharging phases. A discrepancy of less than 50 mV between the measured and computed results 
is observed after one week. The union of the circuit state equations based model and the nonlinear leakage 
resistance determination allows the three-branch circuit model to achieve a high accuracy both in real-time 
simulation and in the presence of long stand-by phases. 

INDEX TERMS Analytical modeling, Circuit optimization, Current measurement, Energy storage, 
Resistance, Supercapacitors, Voltage measurement.  

I. INTRODUCTION 
Approximately 25 years after their entry into the market, 
supercapacitors (SCs) have emerged as a pervasive 
technology. Over the past three decades, battery energy 
density has grown significantly, tripling its capacity. SCs 
have experienced an astonishing 20-fold increase in energy 
density, reaching up to 100 Wh/kg in the case of hybrid 
capacitors [1]. With regard to power density, both batteries 
and SCs undergo a similar, impressive 24-fold increase [1], 
with SCs having far superior performance. SCs can be a 
better choice than batteries in high-power density 
applications with typical charging time scales of a few tens 
of seconds to a few minutes, as well as in low energy 
density applications and low temperature environments [2]. 
The most promising applications are in their integration 
with batteries, where the SCs provide the required power 

bursts or cope with quick energy recovery [3]-[10], 
especially in cyclic operations such as braking and 
accelerating in electric vehicles (EVs). Such applications 
are numerous to the extent that name them all would take 
too many rooms. SCs applications range from 
uninterrupted power supplies (UPSs), cordless 
screwdrivers, digital cameras to provide flashlights, 
portable speakers, and hybrid vehicles requiring stop and 
go driving, including buses, trains, agricultural machinery, 
excavators, cranes, and forklifts [11]. Other applications 
include fast charging for EVs, sensor networks, emergency 
door operation and eviction slide operation (e.g., in the 
Airbus A380 jet), emergency power system of More-
Electric Aircraft, flexible and wearable SCs, powering in 
robotics, integrated systems for renewables and energy 
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devices, electric unmanned aerial vehicle applications and 
so forth [11] - [14]. 

The use of SCs in real-time applications in electronic 
circuits requires a circuit model to correctly predict their 
behavior. Although for rough sizing in power systems, a 
linear representation with an RC circuit may be sufficient, 
especially when integrated into a broader control system 
[15]–[22], this approach is inadequate for designing 
electronic systems, particularly when the SCs operate 
intermittently, with longer stand-by periods; for example, 
when SCs are the storage component in power systems for 
sensor networks. Manufacturers generally provide only 
nominal resistance and capacitance parameters but not 
equivalent circuits. As discussed in the next section, there 
are numerous equivalent circuit models and methods for 
determining them in the literature. However, some require 
time-consuming procedures that are difficult to implement 
by designers, others show a lack of accuracy, and in a few 
studies, it is not clear how to identify some parameters. This 
study provides a novel identification procedure for a three-
branch model based on circuit state equations combined 
with Conventional Trust Region Reflection (CTRR) 
optimization. The results are compared with a simple 
optimization of the approach proposed in [22], which has 
become a reference in the literature. In addition, this work 
proposes a novel method to evaluate the leakage resistance 
behavior as a function of time and voltage, enabling good 
correspondence between the model and measurements 
during prolonged stand-by periods. 

II. EQUIVALENT CIRCUIT MODELS IN LITERATURE 
Multiple approaches for modeling SCs have been presented in 
the literature. A comprehensive review of the metrics, 
mechanisms, and models of SCs can be found in [23]–[29], 
and electrochemical models, intelligent models, and thermal 
models are not mentioned here but can be found in the cited 
papers, for example, [23], [24], [30]. Another alternative to 
equivalent circuit models (ECMs) are the fractional-order 
models. With a different mathematical approach, they exhibit 
good capabilities of fitting experimental data with fewer 
model parameters. Examples are reported in literature 
following time domain [31]-[35] or frequency domain 
approaches [36], [37]. 
In the following, the authors would like to recall the main 
ECMs approaches for reader convenience. 
The one branch model is shown in Fig. 1 a), whereas 
Fig. 1 b) and Fig. 1 c) show a three-stage ladder model [38] 
and the so-called dynamic model [39], respectively. A 
comparison between these three models is discussed in 
[40]. The one-branch model is suitable for a rough design 
of storage systems but lacks the accuracy required to 
properly reproduce the behavior of SCs. Fig. 1 d) shows the 
two-branch model analyzed in [41] and [42]. In [43] the 
authors proposed an optimization of a two-branch 
equivalent circuit that matches the experimental data with 

a mean relative discrepancy ranging from 0.5 % to 4 %, 
depending on the current. The transmission line model is a 
generalization of the three-stage ladder model, as shown in 
Fig. 1 e). In [26], the authors compared three models: i) the 
RC model, ii) the two-branch model, and iii) a multi-branch 
model with respect to the experimental results shown in 
[44]. The comparison reveals that the multi-branch model 
better satisfies the experimental results. Fig. 1 f) shows a 
modified two-branch circuit [45] while Fig. 1 g) is the well-
known three-branch Zubieta-Bonert model [22]. Fig. 1 h) 
represents a combination of configurations 1 f) and 1 g), 
which is particularly suitable for real-time modeling [46]. 
Generally, the models are designed to identify the 'trained' 
SC. In fact, a new SC exhibits a different behavior than an 
‘operating’ SC, as shown in Fig. 2. 

a) b)

c) 
d)

 e) 
f)

g) 
h)

i)

FIGURE 1. Equivalent circuit models of SCs: a) one branch 
model, b) three-stage ladder model, c) dynamic model, d) two-branch 
model, e) transmission line model, f) modified two-branch circuit, g) 
three-branch Zubieta-Bonert model, h) De Carne and colleagues’ 
model, i) Torregrossa and colleagues’ model. 

 

FIGURE 2. ‘Training’ of a new 400 F supercapacitor to 
reach a stable output voltage. 
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Similarly, when a SC undergoes a very long stand-by phase 
or remains unused for a long time, its behavior resembles 
that of a non-trained SC. In fact, the charge accumulated in 
the macropores available at the electrode–electrolyte 
interface increases with each charge cycle until it reaches 
saturation. Moreover, the charging time at the same current 
slightly reduces charging after charging. As shown in 
Fig. 2, it takes approximately ten charging cycles, or even 
fewer, to reach saturation [47]. Likewise, if a SC remains 
inactive for a long time, it undergoes a relaxation and 
redistribution phenomenon, resulting in a lower output 
voltage during self-discharge compared to a trained 
capacitor. This phenomenon is analogous to the one 
described earlier. The model proposed in [47] and shown in 
Fig. 1 i) incorporates this phenomenon, together with [48], 
which however follows a different approach.  
The analysis in this study refers to trained SCs. The model 
is built for a SC that starts from a known and possibly 
repeatable condition, to then be controlled over time. Once 
training has been carried out on the SC, possibly repeated 
after a long period of relaxation, so that the charge-self 
discharge cycle is repeatable, a reference condition is 
defined. Parameters of the proposed ECM are defined in 
this condition. 

III. MEASUREMENT SETUP 
The present study utilizes current and voltage 
measurements on a SC to identify and verify the proposed 
models. The current measurement is performed with a LEM 
IT_65-S Ultrastab transducer, with an expanded 
uncertainty limited to 0.1 ‰ in DC. Two channels of a 
National Instruments PXI-4461 board, fitted with a delta-
sigma analog-to-digital converter at 24 bits, were used as 
digitizers. The voltage is measured directly on one channel 
of the board with a voltage range of ±3.16 V. 
Measurements are acquired and managed using a program 
created in the LabVIEW environment. For a long stand-by 
of a few days or a week, voltage measurements were 
performed with a reference multimeter (Fluke 8588 A) with 
an input impedance greater than 10 G and sampling interval 
of 10 s. The instrumentation was calibrated at INRIM 
before the measurements. To provide a constant charging 
and discharging current, an ITECH IT-6015-C bidirectional 
programmable DC power supply is implemented in the 
experimental setup. All measurements and investigations 
were performed at a controlled room temperature of 
23 ± 0.5°C. The device under test (DUT) is an EDLC Eaton 
XV series SC with a nominal capacitance of 400 F. The 
following results are obtained with a charging current of 15 A. 

IV. THREE-BRANCH EQUIVALENT CIRCUIT 
The three-branch equivalent circuit can provide an excellent 
simulation of the behavior of SCs with limited complexity. 
Unlike the two-branch approach, the three-branch circuit 
allows the simulation of real-time behavior over a long 

timespan. For parameter identification through a charging and 
self-discharging phenomenological approach, we can refer to 
Fig. 2. The SC is charged with a constant current i up to the 
rated voltage (voltage peak); subsequently, the charging 
current drops to zero, and the SC undergoes a self-discharging 
phase, mainly owing to the relaxation and charge 
redistribution phenomena. The three-branch model proposed 
in [22] is illustrated in Fig. 3. Each branch has its own time 
constant. To simulate nonlinear charging behavior (Fig. 2), a 
voltage-dependent capacitor is introduced. The first, second, 
and third branches are called immediate, delayed, and long-
term branches, respectively, based on their time constants. 
The first or immediate branch with parameters 𝑅 , 𝐶  , and the 
voltage-dependent capacitor 𝐶  mainly influences the 
charging phase within a time range of tens of seconds. The 
second or delayed branch with parameters 𝑅  and 𝐶   mainly 
influences the initial part of the discharging phase (usually 
lasting a few minutes), and the third or long-term branch with 
parameters 𝑅 , 𝐶  represents the SC behavior in the latter part 
of the discharging phase, which lasts a few hours. When the 
three branches reach equilibrium, output voltage Vt no longer 
changes. To simulate further discharge of the SC, which 
occurs in the real world, a leakage resistor Rlea is added in 
parallel to the terminal voltage. This qualitative explanation 
does not properly describe the interdependence between the 
three branches, as discussed in Section VI B. For what concern 
Rlea, to the best knowledge of the authors, there are limited 
references in the literature describing a method to assess this 
parameter [49]. A novel method is proposed in this study and 
is described in Section V. Furthermore, this involves a 
significant modification of the equivalent circuit of Fig. 3 with 
respect to the classic circuit shown in Fig. 1 g), as Rlea is no 
longer a constant resistance but a variable resistance 
dependent on the voltage. 
However, by neglecting Rlea as a first approximation, an easy 
estimation of the other seven circuit parameters in Fig. 3 can 
be obtained according to [22]. As also verified by other 
authors (e.g., [47] and [50]), the approach proposed in [22] 
tends to underestimate the final voltage of the SC in the 
charging phase; therefore, at least optimization of the first 
branch parameters is required to improve the accuracy. 
A simple and effective optimization can be achieved as 
follows. The voltage on the first branch capacitors can be 
expressed as 

 

FIGURE 3. ‘Three-branch equivalent circuit of a SC. 
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𝑉 𝑡
𝑄 𝑡

𝐶
 

𝑖  𝑑𝑡

𝐶 𝐶  𝑉
 

𝑖  𝑡
𝐶 𝐶  𝑉

                     1  

so 
𝐶  𝑉 𝑡 𝐶  𝑉 𝑡 𝑖  𝑡 0                                            2  

where 𝑄 𝑡  is the charge stored in the SC versus time and t is 
the time. The objective function to be minimized is the 
difference between the measured terminal voltage 𝑉 𝑡  
and that obtained by the model 𝑉 , as follows: 

𝑉 𝑉 𝑅  𝑖                                                                           3  
Therefore, by obtaining 𝑉 𝑡  from (2), where only the 
positive solution has a physical meaning, and substituting in 
(3), the objective function 𝑓 𝑡  is defined as: 

𝑓 𝑡 𝑉 𝑡
𝐶 𝐶 4𝐶 𝑖 𝑡  

2𝐶
 𝑅 𝑖    4  

 
Starting from the initial parameters 𝑧 𝐶 , 𝐶   identified 
according to [22], the function 𝑓 𝑡  is nonlinear. Therefore, 
a nonlinear minimization approach is required to optimize the 
vector parameter 𝑧 𝐶 , 𝐶 . This can be achieved by 
solving a nonlinear least-squares problem, where 𝑓 𝑡 𝑧  is 
a vector, with n elements being the function values at each 
measured time sample 𝑉 𝑡 . So that: 

𝑓 𝑧  

⎣
⎢
⎢
⎡
𝑓 𝑧
𝑓 𝑧

⋮
𝑓 𝑧 ⎦

⎥
⎥
⎤
                                                                   5  

The nonlinear least-squares problem can be solved efficiently 
in the Matlab™ environment using the 'lsqnonlin' function, 
according to the command: z = lsqnonlin (𝑓 𝑧 , 𝑧 ). As the 
output, the function returns the optimized parameters 
𝑧 𝐶 _ , 𝐶 _  with a CPU time lower than one 
second, on a common personal computer. 
A comparison between the measured values and those 
obtained using the optimized model is shown in Fig. 4 a). In 
the same figure, the results of the one-branch model and of the 
model [22] are also shown for completeness. Fig. 4 b) shows 
the absolute voltage difference between the measured and 
computed values using the optimized model. The maximum 
discrepancy of 0.11 V, corresponding to a relative difference 
of 4 % with respect to the rated voltage, occurs when the 
voltage peak drop is reached, and is mainly due to a time-shift 
introduced by the model. Except for this peak error, in most of 
the considered timespan, the error does not exceed 1.5 % 
(± 0.04 V). After a few hundred seconds, the error shows an 
increasing trend with time. Indeed, as underlined by other 
authors, the model does not seem to be suitable for long stand-
by phases of the SC. To overcome this problem, a new high-
accuracy modeling approach is proposed in Section VI A, 
along with an improvement in the Rlea assessment described in 
the next section. 

V. LEAKAGE RESISTANCE ASSESSMENT 
Following the charging of the SC, once the nominal voltage is 
reached and the charging current ceases, a self-discharge 
process occurs, which can be divided into three parts. In the 

first part, there is a sudden voltage decrease near the peak, 
lasting a few milliseconds to tens of milliseconds, 
corresponding to the voltage drop in the internal resistance 
when the current ceases. Then, in the second part, the voltage 
decreases owing to the charge redistribution between the three 
branches of the equivalent circuit, which lasts for 
approximately a few hours (Fig. 5). Finally, in the long-lasting 
third part (which can extend for many hours or even days), the 
voltage decreases owing to the internal electrochemical 
phenomena. The last part is considered in the model by the 
leakage resistance Rlea which is simply a representation of the 
phenomenon, even if its physical/chemical nature is likely not 

 

FIGURE 5. ‘Computed behavior of the SC terminal voltage 
Vt during charging and self-discharging lasting 6 hours. The figure 
shows also the behavior of the voltages of the capacitors Ci0 and 
Ci1 (Vi), Cd (Vd), and Cl (Vl) of the equivalent circuit (Fig. 3). A 400 F 
SC was considered. 

a) 

b) 

FIGURE 4. ‘a) Comparison between the measured 
galvanostatic charging and self-discharging for the: i) one-branch 
model (simple RC), ii) [20] model, and iii) optimized model. b) 
Absolute difference between the measured voltage and the one 
computed through the optimized [20] model. 
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only resistive. Indeed, Rlea must be a nonlinear parameter to 
properly mimic the SC behavior under self-discharge. In the 
model without Rlea, the voltage remains constant indefinitely, 
which is not physically reasonable. 
Starting from a discharged SC, we can define the time from 
the beginning of the SC charging, up to the time where the 
equilibrium between the internal capacitances is reached, as 
‘settling time’ (ST). This time is approximately 4 hours for the 
considered DUT (Fig. 5). For a specific SC, the ST can be 
verified using the SC model described in Section VI. 
To determine Rlea for our DUT, we implemented a method that 
consists of charging the SC up to the rated voltage and then 
leaving it self-discharging for three days by recording the 
terminal voltage Vt1(t). After three days, the charging and 
discharging procedure is repeated, and the terminal voltage 
Vt2(t) is measured and recorded for a couple of days by 
connecting a 10 kauxiliary resistor, Raux, in parallel with the 
SC. Discharging is quicker as the resistance decreases. A very 
important point is to connect the auxiliary resistor after 
approximately twice the ST, because before this time, the 
effect of the third branch of the equivalent circuit could still be 
present, which can interfere with the effect of Rlea. 
Raux can be chosen in order to significantly affect the voltage 
variation versus time, while avoiding a too quick discharge.  
The experimental results are shown in Fig. 6 a). The blue 
curve represents the discharge of the SC alone (Rlea), which is 
properly fitted by an exponential decay function with three 
time constants: 

𝑉 𝑡 𝑉 𝑎 𝑒 𝑎 𝑒 𝑎 𝑒  6  
where 𝜏 , 𝜏  and 𝜏  are three time constants and V01, a11, a12, 
a13 and t11 are the other interpolation parameters. 
The green curve represents the discharging of the SC with 
auxiliary resistance in parallel (Rlea // Raux), which is properly 
fitted with an exponential decay function with two time 
constants 𝜏  and 𝜏 . 

𝑉 𝑡 𝑉 𝑎  𝑒 𝑎  𝑒                        7  
and where V02, a21, a22 and t22 are the other interpolation 
parameters. 
In the model, the equivalent circuit seen by the output 
resistance Rlea is a voltage-dependent capacitance with a small 
series resistance, which is negligible compared to the output 
resistance. Therefore, it is reasonable to hypothesize that the 
rate of variation of the voltage Vt at the terminals of the SC 
over time depends on the self-discharge current. Without an 
auxiliary resistor, the self-discharge current can be expressed 
as 

𝑉
𝑅 𝑉

𝐶 𝑉  
𝑑𝑉 𝑡

𝑑𝑡
 

                                                   8  

and in presence of the auxiliary resistor, it can be obtained in 
accordance with 

𝑉
𝑅 𝑉  𝑅

𝑅 𝑉 𝑅

𝐶 𝑉    
𝑑𝑉 𝑡

𝑑𝑡
 

                                 9  

 

The time behavior of the voltage derivatives is shown in 
Fig. 6 b). To evaluate the output resistance, (8) and (9) must 
be considered at the same voltage (i.e., by horizontal lines in 
Fig. 6 a), because in this case, the capacitance seen by the 

 a) 

b) 

FIGURE 6. a) SC long term self-discharging behavior. Blue 
line: self-discharging. Green line: self-discharging with an auxiliary 
resistor in parallel. b) Time derivatives of the curves in Fig. 6 a).  

 a) 

 
b) 

 

FIGURE 7. Leakage resistance behavior of a 400 F SC a) versus 
the SC terminal voltage and b) versus time. 
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output resistance is the same. The same voltage is obtained at 
different time instants, where we call tlea the instant in which a 
specific voltage Vt1 is obtained with only Rlea, and taux when the 
same voltage Vt2(taux) = Vt1(tlea) is obtained in the case of 
Rlea // Raux. At the evaluation points, the voltage is the same, 
and the ratio between (9) and (8) is simplified as 

𝑅 𝑉 𝑅
𝑑𝑉 𝑡

𝑑𝑡
𝑑𝑉 𝑡

𝑑𝑡
1    10  

The computed behavior of Rlea versus voltage [Rlea = Rlea (V)] 
provides a function that increases as the voltage decreases, as 
shown in Fig. 7 a) for the considered SC. The trend is well 
interpolated by the function with two time constants shown in 
(7). Because there is a one-to-one correspondence between the 
voltage during discharge (blue curve in Fig. 6 a) and time, the 
Rlea time behavior [Rlea = Rlea (t)] can be easily obtained, as 
shown in Fig. 7 b), which can also be useful in the simulations. 
The interpolation of Fig. 7 b) can be obtained with a function 
similar to (7), and in particular, 

𝑅 𝑡 𝐴 𝐴  𝑒 𝐴  𝑒                                          11  
where 𝑅 𝑅 2 ∙ 𝑆𝑇  is the initial value of 𝑅  that, for 
the considered SC, is equal to 6.06 k. 

 
In order to verify the pattern of Rlea in another SC and to verify 
the variation of the results changing the Raux we tested a twin 
SC, same brand and same size, with 3 auxiliary resistors 
having values of 10 k 5 kand 1 k to cover at least one 
order of magnitude variation. The results are reported in 
figures 8 a) and 8 b). The behavior of the Rlea versus time is 
similar to the previous SC with a similar initial value, but with 

a lower resistance increase versus time. Fig. 8 a) highlight that 
changing the auxiliary resistor the Rlea trend versus time 
remains the same, but there is a non-constant bias in terms of 
resistance values at a specific time, which significantly 
reduces versus time. With respect to the determination with 
Raux = 10 ksuch a bias determines a variation of the initial 
Rlea up to 37 % for Raux = 1 k and about 25 % with 
Raux = 5 k, and below 10 % after 36/42 hours (Fig. 8 b). Such 
a variation could seem quite high, however due to the low 
sensitivity of SC terminal voltages with respect to Rlea 
variations (see Sect. VI B), this does not compromise the 
effectiveness of Rlea behavior determination, as will be better 
discussed in Sect. VI C. 
A useful choice criterion for Raux could be to perform a 
preliminary measurement, to estimate the initial Rlea value, and 
choose a Raux with a resistance value close to that. 

VI. OPTIMIZATION BASED ON STATE EQUATIONS 

An alternative to the 'classical' identification presented in [22] 
is proposed below based on the circuit state equations. In this 
approach, resistance Rlea is considered constant to the initial 
value determined in the previous section. 

A. STATE EQUATIONS BASED MODEL 
The vector state equation can be obtained with reference to the 
circuit shown in Fig. 3, as follows: 
𝒗 𝑨𝒗 𝒃                                                                                   12  

where v is the vector representing the state variables, which 
are the capacitor voltages (13) and 𝒗 is the time-derivative 
vector (14). 

𝒗
𝑉
𝑉
𝑉

                     13   ;              𝒗

⎣
⎢
⎢
⎢
⎡

⎦
⎥
⎥
⎥
⎤

                 14  

Equation (12) is nonlinear because the matrix of coefficients 
A depends on 𝑉 , and b is the control vector. 
It is possible to start from Kirchhoff equations at circuit nodes 
like 
𝑖   𝑖 𝑖 𝑖                                                                            15  
and loop equations 

𝑉 𝑉 𝑅 ∙ 𝑖 𝑅 ∙ 𝑖
𝑉 𝑉 𝑅 ∙ 𝑖 𝑅 ∙ 𝑖
𝑉 𝑉 𝑅 ∙ 𝑖 𝑅 ∙ 𝑖   

                                                        16  

by considering that currents are the time derivatives of 
capacitors charge as: 

⎩
⎪
⎨

⎪
⎧ 𝑖

𝑑𝑄
𝑑𝑡

𝐶 𝑉 ∙
𝑑𝑉
𝑑𝑡

    

𝑖
𝑑𝑄
𝑑𝑡

𝐶 ∙
𝑑𝑉
𝑑𝑡

         

𝑖
𝑑𝑄
𝑑𝑡

𝐶 ∙
𝑑𝑉
𝑑𝑡

            

                                                      17  

Concerning the first equation in (17) we can better specify 
that: 

𝑖
𝑑
𝑑𝑡

𝐶 𝐶  𝑉 𝑡 𝑉 𝑡 𝐶  
𝑑𝑉
𝑑𝑡

2 𝐶  𝑉   
𝑑𝑉
𝑑𝑡

 

     a) 

b) 
 

FIGURE 8. a) Leakage resistance vs time with three
different Raux, b) resistance percentage relative difference with
respect to determination with Raux,= 10 k. 
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so that 𝐶 𝑉  is: 
𝐶 𝑉 𝐶 2 ∙ 𝐶 ∙ 𝑉                                                           18  
Combining (15) and (16), one can obtain the currents as a 
function of the state variables, of the resistances, and of the 
total input current i. By substituting the right side of (17) to 
currents, matrix A and vector b can be easily computed as 
follows: 

𝑨

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝑅 𝑅
𝑑𝑒𝑛 ∙ 𝐶 𝑉

𝑅
𝑑𝑒𝑛 ∙ 𝐶 𝑉

𝑅
𝑑𝑒𝑛 ∙ 𝐶 𝑉

𝑅
𝑑𝑒𝑛 ∙ 𝐶

𝑅 𝑅
𝑑𝑒𝑛 ∙ 𝐶

𝑅
𝑑𝑒𝑛 ∙ 𝐶

𝑅
𝑑𝑒𝑛 ∙ 𝐶

𝑅
𝑑𝑒𝑛 ∙ 𝐶

𝑅 𝑅
𝑑𝑒𝑛 ∙ 𝐶 ⎦

⎥
⎥
⎥
⎥
⎥
⎤
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𝒃

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑅  𝑅  𝑖 𝑖

𝑑𝑒𝑛 ∙ 𝐶 𝑉
𝑅  𝑅  𝑖 𝑖

𝑑𝑒𝑛 ∙ 𝐶
𝑅  𝑅  𝑖 𝑖

𝑑𝑒𝑛 ∙ 𝐶 ⎦
⎥
⎥
⎥
⎥
⎥
⎤
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where: 
𝑑𝑒𝑛  𝑅 ∙ 𝑅 𝑅 ∙ 𝑅 𝑅 ∙ 𝑅                                             21  
When (12) is solved, the SC terminal voltage can be obtained 
as (22). 

𝑉
𝑅  𝑅  𝑉 𝑅  𝑅  𝑉 𝑅  𝑅  𝑉 𝑅  𝑅  𝑅  𝑖 𝑖

𝑑𝑒𝑛
 22  

B. SENSITIVITY ANALYSIS 
Starting from the state equations based model, a sensitivity 
analysis was performed by varying one circuit component 
value (resistance or capacitance) at a time of ± 5% and ± 10 % 
with respect to the identified nominal value in the considered 
DUT. The variations in the SC terminal voltage owing to the 
variations in the resistance and capacitance values are shown 
in Fig. 9. From this analysis, some interesting clues can be 
deduced regarding the sensitivity of the model output to the 
circuit parameters and the choice of an appropriate timespan 
for parameter optimization. Fig. 9 a) shows the variation in the 
SC terminal voltage Vt owing to the relative variation in the 
input resistance Ri and clearly shows that the variation in the 
voltage is associated with the variation in the input current. 
Fig. 9 b) shows the effect of Rlea variations on the terminal 
voltage. As shown, the variations in Rlea affect the output 
voltage less significantly than the other parameters, but its 
influence increases with time. However, if Rlea is not properly 
chosen or measured and its order of magnitude is incorrect, it 
can have a significant effect on the identification of the other 
parameters. Fig. 9 c) and Fig. 9 d) show the variation in the SC 
terminal voltage owing to the relative variation in Ci0 and Ci1. 
The sensitivity is very high compared with that of the other 
parameters. This variation is prevalent during the charging 
phase of the capacitor. The concavity of the variations for 
these two parameters is opposed, which is appropriate for 
optimization. Therefore, from the sensitivity analysis, a 
suitable timespan for the optimization of these two parameters 
can be approximately equal to the SC charging time of the 

equivalent circuit first branch. Fig. 9 e) show the variation in 
the SC terminal voltage owing to the relative variations in the 
resistance Rd. In this case, the sensitivity is more than one 
order of magnitude lower than that of the previous branch and 
the effect is maximum after the voltage peak and become 
negligible in about a half of the settling time.  
Fig. 9 f) show the variation in the SC terminal voltage owing 
to the relative variations in the resistance Cd. Also in this case, 
the sensitivity is about one order of magnitude lower than that 
of the first branch parameters and the effect is maximum in 
about one third of the settling time and then remains almost 
constant, with a slow decrease. Fig. 9 g) and Fig. 9 h) show 
instead the variation of the SC terminal voltage due to the 
relative variation of the resistance Rl and the capacitance Cl, 
respectively. Here the initial shape of the graph is similar to 
those of Rd and Cd, but the time is expanded to about one order 
of magnitude. The sensitivity is comparable to the other one 
and, as in the previous case, the sensitivity for the resistance 
has a sign that is opposed to that of the capacitance. 
The different behaviors in time and shape of these graphs, and 
their similar sensitivities, allow us to consider the optimization 
of Rd, Cd, Rl and Cl, with a proper choice of the timespan, 
approximately from the end of the charging of the first branch 
to the end of the ST of the capacitances Cd and Cl (e.g., from 
2 minutes to 4 hours in Fig. 5). 

C. MODEL IDENTIFICATION 
Model identification is performed by comparing the model 
results and experimental measurements within a timespan that 
is limited but sufficient to allow each of the three branches to 
affect the terminal voltage of the SC. In our experiments, we 
verified that one-third of the ST is sufficient for a good model 
identification.  
The optimization is obtained using the objective function, 
which is the difference between the voltage at the terminals of 
the SC simulated by the model Vt(t) and that measured in the 
laboratory at the SC terminals 𝑉 𝑡 . In addition to the 
objective function, the optimizer requires some other input 
data: i) the model equations (matrix A and vector b), ii) an 
initial value of the parameters to be identified (Rd, Rl, Ci0, Ci1, 
Cd, Cl,)0, iii) the initial value of Rlea and of the state variables 
(Vi, Vd, Vl)0, and iv) the value of Ri.  
The nonlinear optimizer that we found effective is based on 
the family of CTRR algorithms [51],[52]. If the optimization 
algorithm reaches the convergence threshold set by the user, 
optimized parameters are provided. 
A discussion of the optimization algorithm is beyond the scope 
of this study. Here it is enough to say that there is an efficient 
tool in Matlab™ for this type of optimization which is the 
"estimate nonlinear grey-box model parameters" which 
responds to the command 'nlgreyest' and that can solve the 
optimization problem summarized in Fig. 10. 
Two clarifications regarding the initial parameters, in point ii) 
above, it is noted that resistance 𝑅  is missing. 𝑅  is defined as 
in [22] by the voltage and current (𝑉 , 𝑖 ) at 𝑡 20 ms from 
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the starting time in the charging phase of a trained SC, 
according to: 

  𝑅
𝑉
𝑖

                                                                                        23  

 

 

 

a) b) 

c) d) 

e) 
f)

g) h) 

 

FIGURE 9. Absolute variation (Vt - V*
t) of the SC terminal voltage Vt induced by a variation ± 5 % and ± 10 % of 

the following parameters: a) Ri, b) Rlea, c) Ci0, d) Ci1, e) Rd, f) Cd, g) Rl, and h) Cl, respectively. 
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Regarding the other parameters, it is not necessary to have 
particularly accurate initial parameters; however, coarse 
parameters are sufficient for convergence of the algorithm. 
Prior identification of the parameters, as in [22], is not 
necessary. Finally, regarding point iii) mentioned above, for 
the trained and discharged SC, the initial values of the state 
variables are equal to zero, and the initial value of Rlea must be 
identified according to Section V. 
A point worth of attention is the presence of a bias in the 
measured current, which is the input for the model, together 
with the measured voltage at the SC terminals, Vt. Even a very 
small bias of a few milliamperes when the current approaches 
zero can provide significant variations in the model results. 

VII. SC BEHAVIOR: SIMULATION AND VALIDATION 
The state equations based model was used to identify the 
model of the DUT already considered in Sections IV and V, 
and its parameters are listed in Table I.  

 

TABLE I 
400 F SC EQUIVALENT CIRCUIT PARAMETERS 

Ri (m) Ci0 (F) Ci1 (F) Rd () Cd (F) Rl () Cl (F) 
5.69 261.6 33.05 12.74 11.77 189.1 13.43

 

Fig. 11 a) shows the identification results, where the absolute 
error, calculated as the difference between the terminal voltage 
computed by the model and that measured, does not exceed 
50 mV around the voltage peak, and then settles to values ten 
times lower. It should be noted that unlike the identification 
performed in Section IV (Fig. 4 b), the error does not increase 
significantly over time. For longer stand-by periods, the 
previously computed behavior of Rlea versus time, as shown in 
Fig. 7 b), is included in the model. As highlighted in 
Fig. 11 b), the trend of Vt computed with the nonlinear Rlea 
behavior is very close to the measured one, with discrepancies 
not exceeding 50 mV. It was pointed out in Sect. V that the 
determination of Rlea nonlinear behavior is affected by a 

 a) 

b) 

FIGURE 12. Comparison between the SC voltage computed 
and measured for a) a first sequence and b) a second sequence with 
stand-by phases. The absolute discrepancies between measured and 
computed results (‘error’) are also shown. 

a) 

b)

FIGURE 11. Comparison between the voltage measured at the SC 
terminals and the one computed with the three-branch model identified 
through the state equations based optimization. The discrepancy 
(‘error’) is also shown. a) Static model with constant Rlea, b) long term 
model with variable Rlea.  

FIGURE 10. Basic scheme of optimization based on state 
equations. Optimal parameters search is based on CTRR optimization. 
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significant uncertainty and measurements in Sect. V 
highlighted variations up to about 40 % in the initial Rlea values 
which are dependent on the choice of the Raux. Due to the small 
sensitivity of the terminal voltage with respect to Rlea 
variations, as highlighted in Fig. 11 b), a variation of ± 40% in 
the Rlea nonlinear behavior lead to a discrepancy lower than 50 
mV with respect to the measured values (< 2%). 
The same diagram, on the contrary, highlights  that the results 
obtained with constant Rlea shows clearly bigger discrepancies 
and are less reliable. 
Figures 12 a) and 12 b) show how, even under dynamic 
conditions, without (Fig. 12 a) or with (Fig. 12 b) a significant 
stand-by phase, the absolute error with respect to the 
measurements remains limited to 50 mV. 

VIII. CONCLUSION 
This paper proposes a method to accurately identify the three-
branch equivalent circuit of SCs. In particular, a novel method 
for the determination of the variable leakage resistance in the 
SC model is proposed and implemented. The method requires 
a preliminary determination of the initial values of leakage 
resistance and internal resistance Ri. The Rlea behavior is 
determined with a measurement procedure that uses an 
auxiliary resistor. Subsequently, through an optimized 
approach based on the state equations, other circuit parameters 
are identified. This approach guarantees a good simulation of 
the SC behavior for the timespan defined by the ST, which is 
related to the charging time of the third branch. For a longer 
timespan, basically from twice ST on, the nonlinear time 
behavior of Rlea must be measured and implemented in the 
model. This allows for high accuracy, even for long stand-by 
phases lasting for several days. The assessment of a nonlinear 
Rlea could be useful also for other ECMs when the effect of 
the circuit capacitor voltages reaches an equilibrium, and the 
further discharging of the device need to be simulated by the 
presence of a leakage resistance. 
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