Tuning of physical-chemical properties of TiO₂ nanotubes for multifunctional applications

- PO07·

Luisa Baudino,^a Mara Serrapede,^b Alessandro Pedico,^a Andrea Lamberti,^{a,b} and C. Fabrizio Pirri^{a,b}

 ^a DISAT Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, corso Duca degli Abruzzi 24, 10129-Torino, Italy
^b Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies, Via Livorno 60, 10144-Torino, Italy
E-mail: <u>luisa.baudino@polito.it</u>

Titanium dioxide nanotubes (TiO₂ NTs) have been widely investigated in the past twenty years due to the variety of possible applications of this material. Important characteristics of TiO₂ NTs are their high surface area and tuneable morphology. These can be combined with key features of TiO₂, such as biocompatibility and photo and electrocatalytic properties. This combination makes TiO₂ NTs perfect candidates for multifunctional applications ranging from biomedical application to sensing and energy devices [1].

Herein, we present TiO_2 NTs grown by anodic oxidation on top of a titanium foil in an EG-based electrolyte with NH₄F [2]. The as-grown amorphous nanotubes were morphologically characterized, as shown in Figure 1a-b. Additionally, the tuneable electronic properties (such as the bang gap, Figure 1c) were investigated varying the post-processing temperatures, while maintaining their amorphous nature.

Figure 3: FESEM (a) top view and (b) cross view, (c) UV-VIS curves of the amorphous TiO₂ NTs.

[1] P. Roy, S. Berger, and P. Schmuki, Angew. Chem. Int. Ed. 50 (2011) 2904-2939.

[2] A. Lamberti, N. Garino, A. Sacco, S. Bianco, A. Chiodoni, and C. Gerbaldi, *Electrochim. Acta* **151** (2015) 222-229.