Rare earth-doped phosphate and germanate glasses for near-infrared power amplifiers and laser sources

Original
Rare earth-doped phosphate and germanate glasses for near-infrared power amplifiers and laser sources / Pugliese, Diego; Lousteau, Joris; Boetti, Nadia G.; Ben Slimen, Fedia; Janner, Davide; Gallicchi-Nottiani, Duccio; Milanese, Daniel. - (2019). (Intervento presentato al convegno 8th International Workshop on Photoluminescence in Rare Earths: Photonic Materials and Devices tenutosi a Nizza (Francia) nel 4-6 Settembre 2019).

Availability:
This version is available at: 11696/77287 since:

Publisher:
Elsevier

Published
DOI:

Terms of use:
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
Rare earth-doped phosphate and germanate glasses for near-infrared power amplifiers and laser sources

Diego Pugliese1,6, Joris Lousteau2,6, Nadia G. Boetti3, Fedia Ben Slimen4, Davide Janner1,6, Duccio Gallichi-Nottiani1,6, Daniel Milanese5,6

1 DISAT and RU INSTM, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
2 CMIC and RU INSTM, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
3 Fondazione Links Foundation, Via P. C. Boggio 61, 10138 Torino, Italy
4 University of Southampton, SO17 1TW, Southampton, UK
5 DIA and RU INSTM, Università di Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy

In recent decades, multicomponent oxide glasses have demonstrated the capability to outperform silica glass as host material for emitters in the near-infrared (NIR) wavelength region. In particular, phosphate and germanate glass compositions can be doped with high amounts of rare earth ions (up to ten times more ions per unit volume with respect to silica) and thus allow the possibility of realizing compact optical amplifiers and fiber lasers able to minimize non-linear effects [1].

We report on the recent advances regarding Yb-Er co-doped phosphate glasses for power amplifiers and Tm-doped germanate glasses for NIR laser sources. Phosphate glasses offer an interesting platform for the realization of optical power amplifiers for ns pulsed sources at 1.5 \(\mu \)m wavelength, by using Er3+ ions as activators and Yb3+ ions as sensitizers. They have been properly engineered to be suitable for crystal-free fiber drawing and subsequently shaped into rods and optical fibers for testing as coherent sources for LIDAR systems.

Table 1: Yb-Er co-doped phosphate glass compositions for optical amplifiers. 2:1, 4:1 and 6:1 refer to the Yb3+/Er3+ molar ratio.

<table>
<thead>
<tr>
<th>Glass name</th>
<th>Er3+[1020 ions/cm3]</th>
<th>Yb3+[1020 ions/cm3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>YE 2:1</td>
<td>1.93</td>
<td>3.86</td>
</tr>
<tr>
<td>YE 4:1</td>
<td>1.92</td>
<td>7.69</td>
</tr>
<tr>
<td>YE 6:1</td>
<td>1.92</td>
<td>11.50</td>
</tr>
</tbody>
</table>

With the aim to develop new compact amplifiers operating in the 2\(\mu \)m wavelength region, novel germanate glass compositions have been developed. Thermal analysis and preliminary fiber drawing test reveal suitable glass thermal stability against crystallization and good glass homogeneity towards the manufacture of performing fiber amplifier.

Acknowledgements
The Authors acknowledge the Interdepartmental Center PhotoNext of Politecnico di Torino and the NATO-SPS Caliber project for their support.

References