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Spin currents at the interface and spin Hall torque

Vittorio Basso, Alessandro Magni, Alessandro Sola, Michaela Kuepferling
Istituto Nazionale di Ricerca Metrologica, Torino, Italy

We compare two different approaches to compute the spin Hall torque at the interface between a spin Hall metallic layer
and a ferromagnet. In one approach one attributes a spin mixing conductance g↑↓ to the interface, while the other employs the
thermodynamic theory for the magnetic moment currents. The main difference between the outcomes of the two approaches is the
field like torque term that, in the first approach is due to the imaginary part of the spin mixing conductance Im[g↑↓], while in the
second one is proportional to the effective damping α′ of the ferromagnet.

Index Terms—spin Hall torque, spin Hall effect, Magnetization dynamic equation

I. INTRODUCTION

The spin Hall torque is one of the most promising effects
in spintronic memory devices for inducing magnetization
dynamics on a thin ferromagnetic (F) layer [1], [2]. The torque
is caused by the spin current electrically generated by the
spin Hall effect in an adjacent normal (N) metallic layer
[3] and can induce the oscillation or the switching of the
magnetization of the F layer [4]–[8]. Another advantage of
the spin Hall torque switching is that the detection of the state
of the magnetic bit can be performed electrically thanks to the
spin Hall magnetoresistance effects [9]–[11].

The description of the spin Hall torque effects on the
magnetization of ferromagnet requires the introduction of two
torque components in the magnetization dynamic equation: the
field-like (FL) and the damping-like (DL), both proportional
to intensity of the spin Hall effect [12]. By projecting all the
vectors onto the plane perpendicular to the magnetization, one
finds the DL in the direction of the injected magnetic moment
and the FL in the perpendicular direction. The harmonic
Hall method permits a detailed characterization of the two
components and reveals that the FL is often much smaller
than the DL and that they both depends on the thicknesses of
the two layers [13], [14] .

In the literature, one finds a derivation of the two torque
terms in relation to the spin mixing conductance of the inter-
face g↑↓ [15], [16]. Such a quantity, with real and imaginary
parts, give rise to the two torque terms [2], [12]. However
real and imaginary parts are often difficult to connect with the
physical properties of the interface (quality of the interface,
band structure of the metals) and requires a detailed physical
interpretation case by case [17], [18]. It is therefore natural
to ask if the two torque terms could be derived by some
other principle not directly invoking an imaginary part for the
conductance g↑↓.

The alternative approach that we propose here is based on
a thermodynamic treatment of the problem of the magnetic
moment current [19]–[22]. In order to allow for the presence
of a spin current at the interface of a ferromagnet we have to
extend the boundary conditions of micromagnetism, therefore
replacing the classical Brown’s boundary conditions. The
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analysis reveals that by using the continuity of the spin current
at the interface between the ferromagnet and the normal metal,
one is able to derive the two torque components and to show
that the, generally small, FL component is proportional to the
effective damping of the ferromagnet. In the present paper
we present the derivation and the properties of the DL and
FL torque terms from both spin mixing conductance and
thermodynamic theory and we discuss the meaning of the
different outcomes.

II. SPIN HALL TORQUE

We consider here spin orbit torque effects arising from the
spin Hall effect of heavy metals such as Ta, W, Pt. The
spin Hall effect corresponds to a spin dependent deviation
of the transport of the electrons. It is an effect that does
not require any magnetic field and is due to the spin orbit
interaction of conduction electrons [23]. The spin Hall angle
is a dimensionless parameter that quantifies the conversion of
the electric current je into a magnetic moment current jM. In
components we have

jM,ij = θSH

(µB
e

)
εijkje,k (1)

where jM,ij is a tensor with two indexes: i, giving the
direction of the current and j giving the direction of the
transported magnetic moment, εijk is the Levi-Civita symbol,
µB is the Bohr magneton and e is the elementary charge. The
spin Hall angle for the magnetic moment θSH has opposite
sign with respect to the one for the spin which is often
reported in the literature θSH = −θspinSH , because the current
of spin is opposite with respect to the magnetic moment one
js = −[(}/2)/µB ]jM. For the magnetic moment we have a
negative spin Hall angle for Pt, θSH(Pt) ' −0.1, and positive
for Ta, θSH(Ta) ' 0.07, and W, θSH(W) ' 0.14, [24].
Therefore in Pt an electric current along y will produce a
positive jM,xz component: jM,xz = −θSH(Pt)(µB/e)je,y .

The spin Hall torque is often described by adding a torque
term to the dynamic equation

dM

dt
− αm× dM

dt
= −µ0γGM×Heff + TST (2)
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In the previous equation, M is the magnetization of constant
amplitude Ms, m = M/Ms is the magnetization versor, α is
the damping constant, µ0 is the magnetic constant and γG is
the gyromagnetic ratio for electrons. The torque TST has both
field-like and damping-like terms. It is found that

TST =
(µB/e)je

dF
[ξDLm× (m× ep) + ξFLm× ep] (3)

where ep is the versor of the polarization of the moments
induced by the spin Hall layer and dF is the thickness of the F
layer. The damping-like (ξLD) and field-like (ξFL) efficiencies
are both proportional to the spin Hall angle, but also depend
on the properties of the two layers.

To derive the expression for the torque one typically con-
siders a normal metal (N) layer with the spin Hall effect of
thickness dN from x = −dN to x = 0 and a ferromagnetic
(F) layer of thickness dF from x = 0 to x = dF (see
Fig.1). The method used to derive the torque is to write the
constitutive equations relating the electric current je and the
magnetic moment current jM to their potentials for both the
F layer and the N layer and then joining the solutions by
setting appropriate boundary conditions [12]. One approach
that simplifies the notation is to measure the magnetic moment
current in the same units of the electric current, i.e. to set
jp = −(e/µB)jM. In a normal metal with the spin Hall effect
the constitutive equations are written as

je,i = −σe∇iµe − σeθSHεijk∇jµp,k (4)
jp,ij = −σeθSHεijk∇kµe − σe∇iµp,j (5)

where σe is the electric conductivity, µe is the electro-chemical
potential and µp is the potential associated with the magnetic
moment current (in the same units of the electro-chemical
one). These equations, once coupled to the continuity equation
for the magnetic moment, provide the solution of the transport
problem. In a ferromagnet one can write the constitutive
equations

je,i = −σe∇iµe − σeβmk∇iµp,k (6)
jp,ij = −σeβmj∇iµe − σe∇iµp,j (7)

where β is the spin polarization and mi are the components of
the magnetization versor m. These equations are appropriate
to describe the transport of magnetic moment parallel to the
magnetization direction m, however the absorption of the
magnetic moment in the perpendicular direction has to be
derived from the magnetization dynamic equation.

The method followed by several authors [2], [12], [17] is to
assume that the spin current perpendicular to the magnetization
is completely absorbed by the ferromagnet and to compute the
torque as TST = −∇ · jM,⊥. The result is finally added to
the dynamic equation written in the Gilbert form as in Eq.(2).
However to obtain the DL and FL terms one has to attribute
special properties to the interface, namely the spin mixing
conductance g↑↓, a quantity which is governing the passage of
the perpendicular current from the N layer to the F layer with
real and imaginary parts. The interpretation of the imaginary

part is that the magnetic moment of the electron traversing the
interface experiences an interaction at the ferromagnet side
giving a precession of the moment of a finite angle around
the magnetization [16]. In terms of the torque, the real part
gives rise to the DL torque and the imaginary part to the FL
torque. There are two critical points in this approach: first, to
attribute the FL part of the torque to a precession occurring
at the interface rather than at the bulk seems not appropriate;
second, to simply add the torque term to the Gilbert form
(Eq.(2)) may be questionable [25].

In the next two sections we both review the approach
with the spin mixing conductance of Ref. [12] and propose
a different approach based on the thermodynamic theory for
magnetic moment currents [19].

N
F

x

y

m

r
θ

φ

dF

dN

z

je,y

jM,xz

ep=z

Fig. 1. Bilayer composed by a normal metal (N) with the spin Hall effect of
thickness dN and a ferromagnet (F) of thickness dF . In the sketch the electric
current flows along y and the magnetic moment current generated by the spin
Hall effect is transporting moment along z in the direction x. The DL torque
is along θ̂ while the FL torque is along ϕ̂, both versors are perpendicular to
the magnetization versor m.

III. SPIN MIXING CONDUCTANCE

To derive the spin Hall torque term Haney et al. [12] (see
also [2], [17]) use the boundary conditions as proposed by
Brataas et. al [15], [16] in their magnetoelectronic circuit
theory. The theory of Brataas et al. is based on ballistic
transport, therefore the potential drop occurs only at the
interfaces. The contact resistance is attributed to the mismatch
between the band structures of different metals. Therefore at
the contact one employs the electrical conductance gc (i.e
je = −gc∆µe). The constitutive equations at the contact
between the normal metal and the ferromagnet are written
by subdividing the potential into the component parallel to
the magnetization m of the F layer, µp,‖, and the component
perpendicular µp,⊥. The equations are je

jp,‖
jp,⊥

 = −gc

 1 P 0
P 1 0
0 0 η

 ∆µe
∆µp,‖
∆µp,⊥

 (8)

where the conductance gc = g↑ + g↓ is the sum of g↑ and
g↓, the conductances for the majority and minority spins,
respectively, P = (g↑ − g↓)/(g↑ + g↓) is the polarization at
the contact and

η =
2g↑↓
g↑ + g↓

(9)
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is the relative mixing conductance for the perpendicular cur-
rent which is related to the spin mixing conductance g↑↓. The
previous approach is not limited to metals and can also be
applied to the contact between a metal and a ferromagnetic
insulator. In that case the conductance quantifies the amount
of spin transmitted from the metal to the insulator. By allowing
both real and imaginary parts to the spin mixing conductance
one obtains

jp,⊥ = −2Re[g↑↓]∆µp,⊥ + 2Im[g↑↓](m×∆µp,⊥) (10)

i.e. the potential difference ∆µp,⊥ produces not only a current
in the same direction of the potential, proportional to Re[g↑↓],
but also a component in the perpendicular direction, propor-
tional to Im[g↑↓]. The torque is computed as

TST =
(µB
e

) jp,⊥(0)

dF
(11)

bacause one assumes jp(dF ) = 0. With a few passages
(reported in appendix A) one can compute jp,⊥(0) and the
torque results Eq.(3) with efficiencies

ξDL = θSH
2Re[g↑↓]gN tanh(d̂N ) + |2g↑↓|2

|2g↑↓ + gN tanh(d̂N )|2
(12)

ξFL = θSH
2Im[g↑↓]gN tanh(d̂N )

|2g↑↓ + gN tanh(d̂N )|2
(13)

where d̂N = dN/lM , gN = σe/lM is the conductance and lM
is the diffusion length of the N layer. With the approach using
the spin mixing conductance, the FL term is associated to the
imaginary part of the spin mixing conductance Im[g↑↓].

IV. THERMODYNAMIC THEORY

An alternative way to derive the torque is to use the ther-
modynamic approach to the magnetic moment currents. This
approach is inspired to the thermodynamic theory of Johnson
and Silsbee [19] and has been developed by several groups
[20], [22], [26]. In non equilibrium thermodynamics each
current has an associated potential and in the linear system
approximation the current is proportional to the gradient of the
potential H∗ with units of a magnetic field. The conversion
between the units of the previous section is µ0µBH

∗ = eµp.
The magnetic moment is a non conserved quantity therefore
the continuity equation must include the presence of sources
and sinks. One finds that the potential H∗ is the quantity
describing the generation and absorption of the magnetic
moment

∂M

∂t
+∇ · jM =

H∗

τM
(14)

and τM is a constant describing the rate of magnetic moment
generation [21]. Ferromagnets are a special case of magnetic
materials in which the magnetization has constant amplitude
and one has also to take into account the phenomenon of
precession. Therefore the continuity equation is not simply
Eq.(14), but rather a dynamic equation that in the Gilbert form
reads

dM

dt
− αm× dM

dt
= −µ0γGM×Heff (15)

where the effective field

Heff = l2EXMs∇2m + HAN + HM + Ha (16)

includes contributions from exchange, anisotropy, magneto-
static field and applied field and lEX is the exchange length.
Eq.(15) contains both damping and precessional terms, but the
magnetic moment current is not explicit. Our task is therefore
to write the dynamic equation for ferromagnets as a continuity
equation. To do so, we first rewrite Eq.(15) in the equivalent
Landau-Lifshitz form

dM

dt
= −µ0γLM×Heff + µ0γLMsαHeff,⊥ (17)

where γL = γG/(1 + α2), and then we notice that in
the effective field the exchange term can be written as a
divergence. Therefore by setting H∗ = HAN+HM+Ha from
Eq.(17) written as a continuity-type equation, like Eq.(14), we
get

∂M

∂t
+(∇· jM,⊥)⊥ = −µ0γLM×H∗⊥+µ0γLMsαH

∗
⊥ (18)

where the magnetic moment current is defined as

jM,⊥ = µ0γLM
2
s l

2
EX(m×∇m− α∇m) (19)

This is the component of the magnetic moment current per-
pendicular to m. Even if the continuity type equation (18),
in which the current is explicit, is relevant only in presence
of interfaces with other layers, it is worth to make two
general comments on its specific form. First, as a dynamic
equation, it has the form of Landau-Lifshitz rather than the
Gilbert one [25]. Second, as a continuity equation, it has two
source terms. It contains the same source term of Eq.(14) (set
τ−1M = µ0γLMsα to verify it), but it also has an additional
source term resulting from the precession of the magnetization.
Indeed, from the point of view of a continuity equation, the
precessional term is a source/sink term which mixing the
components of the magnetization. If, for example, we choose
the precession around z (i.e. set H∗⊥ = Hz), in Eq.(18) we
can see that the first term at the right hand side becomes
µ0γLMsH(−myx+mxy) i.e. (with mx > 0 and my > 0) it
is a sink of moments along x and a source along y.

The solution of Eq.(18) is obtained by imposing the bound-
ary conditions with other layers. Indeed we cannot impose any-
more the Brown’s natural boundary conditions ∂m/∂n = 0,
where n is the normal to the surface of the F layer, but rather
we have to impose the continuity of the current, jM,⊥, and of
the potential, H∗⊥, with the other layers. To do so we have to
solve the problem of the transport of magnetic moment layer
by layer and finally joining the solutions at the boundaries.
For a thin F layer we approximate

(∇ · jM,⊥)⊥ =
(µB
e

) jp,⊥(0)

dF
(20)
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where again we have set jp,⊥(dF ) = 0. With a few passages
(reported in appendix B) we can compute jp,⊥(0). To un-
derstand the difference with respect to the derivation of the
previous section we take a real conductance for the contact
(η = 1 in Eq.(8)). The result is

jp,⊥(0) = jp,S,eqep,⊥ − gN,eq
(µB
e

)
µ0H

∗
⊥(0) (21)

where ep,⊥ = −m× (m× ep),

jp,S,eq = θSH
gc tanh(d̂N ) tanh(d̂N/2)

gc + gN tanh(d̂N )
je,y (22)

is an equivalent current source and

gN,eq =
gcgN tanh(d̂N )

gc + gN tanh(d̂N )
(23)

is an equivalent conductance. As the F layer is thin we also
approximate H∗⊥(dF ) ' H∗⊥(0) and then simply call it H⊥.
Therefore Eq.(18) becomes

dM

dt
= −µ0γLM×H⊥+µ0γLMsα

′H⊥−
(µB
e

) jp,S,eq
dF

ep,⊥

(24)
where

α′ = α+
(µB
e

)2 gN,eq
γLMsdF

(25)

is an effective damping. With the use of the thermodynamic
theory we have derived Eq.(24) which contains two results.
First, the effective damping is enhanced with respect to the
pure ferromagnet by the presence of the side metallic layer,
a well known effect which is independent of the spin Hall
activity of the metal [27]. Second, the torque exerted at the
interface appears as a term in the Landau-Lifshitz form and
not in the Gilbert one [25]. Therefore if we rewrite it in the
Gilbert form we get Eq.(2) with α′ instead of α and we get
the two terms for the torque of Eq.(3) with

ξDL = θSH
gc tanh(d̂N ) tanh(d̂N/2)

gc + gN tanh(d̂N )
(26)

and ξFL = α′ξDL. With the thermodynamic theory the FL
term is associated to the effective damping α′.

V. DISCUSSION AND CONCLUSION

We have compared two different approaches to compute the
spin Hall torque on a ferromagnet. In the first approach one
attributes real and imaginary parts to the spin mixing conduc-
tance g↑↓ and finds that the FL terms is directly associated
to the imaginary part Im[g↑↓]. In the second approach, based
on the thermodynamic theory [19], the FL term is associated
to an effective damping, α′, including the intrinsic α of the
ferromagnet and the contributions of the interface and of the
metallic layer. It is interesting to observe that the FL term is
the natural consequence of the presence of the damping term
in the dynamic equation of the ferromagnet. To understand the
role played by the bulk and by the interface one can take the

limit in which the bulk conductance is very large (gN � gc).
Both expressions are greatly simplified and it is interesting
to compare the ratios ξFL/ξDL. For the theory with the spin
mixing conductance the ratio is Im[g↑↓]/Re[g↑↓] while for the
thermodynamic theory is α′ = α + (µB/e)

2gc/(γLMsdF ).
In the second case we have an explicit dependence on the
conductance of the contact gc and on the thickness of the F
layer dF . This second type of behavior seems to be the one
observed in experiments. In W/CoFeB bilayers with different
thicknesses dF of the F layer, the measured DL and FL
efficiencies actually show that the FL one decreases strongly
as the thickness is increased, while the DL is practically
insensitive to dF [18]. Future work will be devoted to compare
the two different outcomes with more detailed experiments
with both metallic and insulating ferromagnets.

APPENDIX A
TORQUE WITH SPIN MIXING CONDUCTANCE

To derive the torque we have to compute jp,⊥(0). We take
ep = ẑ and define the reference system (m, θ̂, ϕ̂) as in Fig.1,
where ϕ̂ = ẑ×m/|ẑ×m| and θ̂ = ϕ̂×m. At the interface
we have je,x = 0 then from Eqs.(8) we get

jp,‖ = − 4g↑g↓
g↑ + g↓

∆µp,‖ (27)

Next we assume that the parallel part of the current is not
absorbed (i.e jp,‖ = 0 and therefore µp,‖(F ) = µp,‖(N))
and that the perpendicular part is completely absorbed (i.e.
µp,θ(F ) = 0 and µp,ϕ(F ) = 0). Therefore in Eq.(10) we
remain with the potential at the metal side only. By dropping
the (N) label and as using (µp)⊥ = µp,θθ̂ + µp,ϕϕ̂ we get
Eq.(10) as

jp,θ = 2Re[g↑↓]µp,θ + 2Im[g↑↓]µp,ϕ (28)
jp,ϕ = −2Im[g↑↓]µp,θ + 2Re[g↑↓]µp,ϕ (29)

The potentials, µp,θ and µp,ϕ at the metal side are given by the
solution of the diffusion equation for the spin Hall layer (see
appendix B). Along the ϕ̂ axis we have jp,ϕ = −gN,effµp,ϕ
then we get the equation

−gN,effµp,ϕ = −2Im[g↑↓]µp,θ + 2Re[g↑↓]µp,ϕ (30)

giving

jp,θ =
2Re[g↑↓]gN,eff + 4|g↑↓|2

2Re[g↑↓] + gN,eff
µp,θ (31)

jp,ϕ =
−2Im[g↑↓]gN,eff
2Re[g↑↓] + gN,eff

µp,θ (32)

Along the θ̂ axis we have jp,θ = −gN,effµp,θ − sin θjp,S,eff
therefore

µp,θ = − sin θ
2Re[g↑↓] + gN,eff
|2g↑↓ + gN,eff |2

jp,S,eff (33)

The current jp,⊥(0) is given by Eqs.(31) and (32). By writing
them in vector form, using sin θθ̂ = m × (m × ep) and
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− sin θϕ̂ = m × ep, we get Eq.(3) with the efficiencies of
Eqs. (12) and (13).

APPENDIX B
SPIN HALL EFFECT LAYER

To find the solution of the magnetic moment transport in the
N layer we use Eqs.(4) and (5) with electric gradients along
y and controlled electric current je,y and magnetic moment
current along x and we have the constitutive equations

jp,xx = −σe∇xµp,x (34)
jp,xy = −σe∇xµp,y (35)
jp,xz = jp,S − σe,‖∇xµp,z (36)

with a current source jp,S = θSHje,y and σe,‖ =(
1 + θ2SH

)
σe. As the spin Hall angle is small we can approx-

imate σe,‖ ' σe. To solve equation (39) for the spin Hall layer
we have to add the continuity equation (14) that in stationary
conditions provides the diffusion equation l2M∇2

xµp,j = µp,j
characterized by a diffusion length lM = (µB/e)

√
µ0σeτM .

With a spin Hall layer of finite thickness from x = −dN and
x = 0 in which the left side is left open, i.e. jp,j(−dN ) = 0,
we have at x = 0

jp,xx(0) = −gN,effµp,x(0) (37)
jp,xy(0) = −gN,effµp,y(0) (38)
jp,xz(0) = jp,S,eff − gN,effµp,z(0) (39)

with jp,S,eff = jp,S tanh(d̂N ) tanh(d̂N/2), gN,eff =
gN tanh(d̂N ) and gN = σe/lM is the conductance for the
magnetic moment in the bulk. By adding the contact with
η = 1 and writing the equation in vector form we get Eq.(21).
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