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A B S T R A C T

We argue that the assessment of the Calibration and Measurement Capabilities, CMCs, by means of the results
of a Key Comparison is a bona fide exercise of conformity assessment, and as such should be treated, using
the appropriate tools, including risk assessment. This position contrasts with the current practice, in which
acceptance or rejection of a CMC claim are based on the normalised error. We show that, behind this seemingly
unique acceptance criterion, different decision rules – guarded acceptance, simple acceptance and guarded
rejection – exist in reality, depending on the characteristics of the comparison. This variety of decision rules
impairs the fairness of the current equivalence arrangement. We suggest that the conformance probability
should be the key parameter to be considered in the assessment of a CMC claim. Using a suitable Probability
Density Function, PDF, for the measurand, we calculate the conformance probability for the possible scenarios,
and show that using the current acceptance criterion the conformance probability can attain unacceptably low
values. Therefore, we maintain that the current acceptance criterion is ambiguous and inadequate, and suggest
to rather adopt a criterion based on the calculation of the conformance probability and the establishment of
a minimum threshold for acceptance. We demonstrate our proposal by applying it to a practical case and to
a fictitious example in mass metrology.
. Introduction

The Mutual Recognition Arrangement of the International Com-
ittee for Weights and Measures (CIPM MRA) [1] establishes the

nterlaboratory comparisons (CIPM or regional) as the master tool to
emonstrate evidence of the Calibration and Measurement Capabilities
CMCs) declared by National Metrology Institutes (NMIs) for their
ploading on the BIPM key comparison database, KCDB [2], their
uthoritative repository. Also, comparisons are carried out at suitable
ime intervals to check that the performance is maintained. Similarly,
ithin the framework of the ILAC Mutual Recognition Arrangement

ILAC MRA) [3], interlaboratory comparisons are regularly carried out
mong accredited calibration laboratories and a reference laboratory
typically but not necessarily the local NMI) with similar purposes. In
his paper, we focus on CIPM key comparisons (KCs) for simplicity and
ith no loss of generality. Indeed, most of the following considerations
pply as well to any generic interlaboratory comparison (ILC).

Guidance exists [4] on how to draw a protocol for and how to
erform a KC. There is as well a huge literature concerning more or less

∗ Corresponding author.
E-mail addresses: a.malengo@inrim.it (A. Malengo), w.bich@inrim.it (W. Bich).

1 Both authors contributed equally to the manuscript.

sophisticated statistical methods to obtain from a data set a consensus,
or reference, value (KCRV) and the associated uncertainty (see some
references in Section 3 below). In some fortunate cases (for example in
chemistry and ionising radiation), the KCRV may be given by a primary
method, thus representing a reference external to the data set, with
an associated uncertainty often negligible compared to those of the
participants. A similar situation holds in the field of proficiency tests,
where international standards provide specific guidance [5,6].

Whatever the case, the degrees of equivalence (DoEs), unilateral
or bilateral, are thus obtained as the difference between the estimate
of the participating laboratory and the KCRV or another participant,
respectively, and the expanded uncertainty of the difference. Hereafter,
we will only consider unilateral DoEs.

To the best of our knowledge, there exists no clear prescription on
how to infer or confirm the CMCs based on the DoEs and more generally
on the outcome of a KC. Also the relevant literature is meagre (see
Section 2 for some instances). All that exists is a more or less consol-
idated practice, universally adopted, perhaps with some variation, in
international and regional KCs, in supplementary comparisons and in
the ILCs carried out in the framework of accreditation.
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We argue that the process of inferring or confirming a CMC based
on the result of a comparison is a bona fide conformity assessment, and
s such should be treated.

We also argue that the DoE as a tool to validate a claimed CMC is
nappropriate, as the two concepts do not have a clear connection.

In this paper, we first recall DoEs and expound our understanding
f a CMC (Section 2). We then discuss the concept of consistency
Section 3), and illustrate the practice currently used to validate a CMC
laim (Section 4). We present our proposal in Section 5 and apply it to
real KC in Section 6. We also discuss the implications for the future
ass comparisons (Section 7). Section 8 concludes the paper.

. Degree of equivalence and calibration and measurement capa-
ility

.1. Degree of equivalence

The CIPM Mutual Recognition Arrangement, CIPM MRA, [1] was
igned in 1999. A set of ancillary guidance documents superseding
revious documents has been published in 2021 [4,7]. The part of the
RA relevant here is the technical supplement (revised in 2003), where

n section T.2 the degree of equivalence (DoE henceforth) is defined as

The degree of equivalence of each national measurement standard
is expressed quantitatively by two terms: its deviation from the key
comparison reference value and the uncertainty of this deviation (at
a 95% level of confidence).

This definition is perfectly clear, but no hints are given on what
o do with DoEs. As a result, no agreed procedure exists on how to
se DoEs to support a CMC claim, especially when a laboratory is
ot consistent with the KCRV. To the best of our knowledge, the only
ocumented attempt to assign a CMC in a technically sustainable way
hen a participant is not consistent with the KCRV is given in [8],
here a procedure is suggested (and possibly adopted by some Con-

ultative Committees, such as the CCQM) that is not too different from
he practice commonly adopted by most CCs (see Section 4 below). A
roposal dealing with the global expansion of the CMC uncertainties
ver a whole range of measurands [9] is beyond the scope of this paper.

.2. Calibration and measurement capability

The definition of Calibration and Measurement Capability, CMC,
laborated in a paper by a BIPM/ILAC joint working group [10] and
lso given in other documents [7,11], reads:

a CMC is a calibration and measurement capability available to
customers under normal conditions. . .

nd further on (in [7]):

In the KCDB, a CMC is characterised by the measured quantity and
associated expanded measurement uncertainty (generally given at a
95% coverage level of confidence), for a given range. . .

n practice, the declared uncertainty is the best measurement uncer-
ainty that can be expected by the laboratory for a given measurand.

Suppose a laboratory has in the KCDB a registered CMC for a nomi-
al quantity value 𝑋 with an expanded uncertainty 𝑈𝑥. This declaration
eans that the laboratory is internationally recognised as being able to
roduce consistently estimates 𝑥𝑗 of that nominal quantity value 𝑋 such

that there is a 95% chance that the true values 𝑋𝑗 lie within 𝑥𝑗 − 𝑈𝑥
nd 𝑥𝑗 + 𝑈𝑥.

The same considerations apply to Best Measurement Capabilities,
MCs, a term used historically in connection with the uncertainties
tated in the scope of an accredited laboratory, the term having the
2

ame meaning as CMC [11].
3. Consistency – A reminder

Any estimate 𝑦 (measured value in the VIM [12]) of a measurand 𝑌
eaves a penumbra of uncertainty ([13], p. 33) about the true value of
. The penumbra is typically expressed by a standard, or expanded,
easurement uncertainty 𝑢(𝑦) or 𝑈 (𝑦), respectively. The concepts of

stimate, measurand, standard and expanded uncertainty are defined
nd universally understood. The same is not true for consistency, yet,
key concept in modern worldwide metrology and the driving force

ehind any international comparison. Wherever two or more measure-
ent results (i.e., estimates and associated uncertainties) of the same
easurand are involved, the key question is whether they are consistent

r not. There is not a formal definition of consistency, although the
erm is generally understood as a synonym for compatibility, this term
eing formally defined (see [12], definition 2.47). Even worse, con-
istency has a main technical meaning in statistics (see, e.g., [14–16])
hich differs from what a metrologist typically intends for it.

Using matrix notation, we consider a set of measured values
=
(

𝑥1, 𝑥2,… , 𝑥𝑛
)⊤, viewed as realisations of random variables

=
(

𝑋1, 𝑋2,… , 𝑋𝑛
)⊤, to be consistent if the random variables 𝑿 have

the same expectation 𝜇. In other words, a consistent data set obeys the
statistical model

𝒙 = 𝜇𝟏 + 𝝐, (1)

where 𝟏 = (1, 1,… , 1)⊤ and 𝝐 is a vector of unknown deviations, taken
as realisations of random variables 𝑬 having expectation equal to zero,
i.e., E(𝑬) = 𝟎 and covariance matrix

(𝝐) = 𝑼 (𝒙). (2)

The further, realistic assumption is usually made that the 𝑋𝑖 are
ormally distributed 𝑋𝑖 ∼ N(𝜇, 𝑢2𝑖 ).

The adequacy of model (1) for a specific data set must be checked
gainst some criterion. There exists a variety of different criteria, either
ptimal or robust [17,18] which, when applied to a specific data set,
an produce different responses. The criterion by far more adopted in
etrology is the well-known chi-squared, or 𝜒2 test [19,20].

In a general form, the test is considered passed if

Pr{𝜒2(𝜈) > 𝜒2
obs} > 𝛼, (3)

here Pr denotes probability, 𝜈 = 𝑛 − 1 is the degrees of freedom, the
bserved statistic 𝜒2

obs is

𝜒2
obs =

(

𝒙 − 𝜇𝟏
)⊤ 𝑼 (𝒙)−1

(

𝒙 − 𝜇𝟏
)

, (4)

̂ being an estimate of 𝜇, and 𝛼 is a value suitably chosen. The left-
hand side of inequality (3) is the so-called 𝑝-value, the probability
of obtaining data at least as extreme as those observed, if the null
hypothesis was true. It can be broadly related, with many caveat [21–
25], to the probability of being wrong in rejecting the null hypothesis,
in this case the hypothesis of randomness of the data set, expressed by
model (1).

In terms of quantiles, expression (3) is written as

𝜒2
obs ≤ 𝑞1−𝛼 , (5)

where 𝑞1−𝛼 is the (1 − 𝛼)-quantile of the 𝜒2(𝜈) distribution.
In the context of the adjustment of fundamental constants [26],

𝜒2
obs ≤ 𝜈 +

√

2𝜈. In that of intercomparisons, 𝛼 = 0.05 [20], so that
condition (5) is 𝜒2

obs ≤ 𝑞0.95.
In the common case in which an external estimate of the true value

of the measurand is not available, the typical choice for the estimate 𝜇
(commonly denoted as 𝑥ref in the context of KCs) of the measurand is
the weighted mean, which is optimal among linear estimators if data
agree with model (1), independently of their probability distribution.
The weighted mean is the optimal estimator if data are normally

distributed [15].
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The imagination of physicists, metrologists and statisticians has
produced a great number of different estimators for the common case
in which data do not behave according to model (1). This reflects the
widespread interest of the topic in the most disparate fields, from the
adjustment of fundamental constants [27–30] to the comparisons of
standards in metrology [31–34] to meta-analysis in medicine [33,35–
38]. A general tool is provided in [39,40].

4. CMC assessment – Current practice

The validation of a CMC is a complex process involving, among
others, considerations about the quality management system of the
candidate laboratory. In any case, the fundamental step to demonstrate
evidence of a claimed CMC is to evaluate the performance of the labo-
ratory in a KC. In this paper, we restrict the discussion to this aspect.
In the current practice, the performance is in most cases evaluated by
using the two parts of which the DoE is made so as to form the so-called
normalised error 𝐸n [5,6,41]:

𝐸n =
𝑥 − 𝑥ref

𝑈
(

𝑥 − 𝑥ref
) = 𝛥𝑥

𝑈𝛥𝑥
, (6)

where 𝛥𝑥 (we dropped the 𝑖 index with no loss of generality) is the
eviation of the laboratory result 𝑥 from the Key Comparison Reference
alue (KCRV) 𝑥ref and 𝑈𝛥𝑥 is the associated expanded uncertainty at the

95% coverage probability. Assuming normality, the denominator is in
general

𝑈𝛥𝑥 = 2
√

𝑢2𝑥 + 𝑢2(𝑥ref ) − 2𝑢(𝑥, 𝑥ref ), (7)

the coverage factor 𝑘 = 2 rather than 𝑘 = 1.96 being used, according to
the customary practice.

The covariance 𝑢(𝑥, 𝑥ref ) (or 𝜌𝑢𝑥𝑢(𝑥ref ), where 𝜌 is the linear correla-
tion coefficient) plays a key role. Whilst its presence in the denominator
is obvious nowadays, it was not so in the past. It was indeed thanks
to a remark by W Woeger [42] that the covariance was included in
calculation. In that paper, references are given demonstrating that the
customary practice at that time was to calculate 𝐸n without covariance.

When 𝑈𝑥 = 2𝑢𝑥 is equal to the CMC claim of the laboratory, as
is typically the case, and as we will assume henceforth, the claim is
considered correct if |𝐸n| ≤ 1.

When a laboratory is not consistent, i.e., when the normalised error
|𝐸n| > 1, the common practice is simply to enlarge the uncertainty 𝑈𝑥
of the CMC so that it is (at least) equal to 𝛥𝑥, or to adopt the procedure
suggested in [8].

The statistical significance of the requirement |𝐸n| ≤ 1 can be
understood considering that the normalised error is related to the
chi-squared statistic for 𝑛 = 2 by 4𝐸2

n = 𝜒2
obs [see Appendix, Eq. (14)].

Therefore, the requirement |𝐸n| ≤ 1 translates into the requirement
𝜒2
obs ≤ 4. Or, 𝑞1−𝛼 = 4 for the 𝜒2(1) distributions corresponds to

1 − 𝛼 = 0.954. This means that, under the assumption that 𝑥 and
𝑥ref estimate the same measurand, i.e, that they are consistent, the
probability of finding a difference equal to or greater than 𝛥𝑥 is a mere
4.6%.2 Of course, this does not mean that there is a 95.4% probability
that they are consistent, let alone that the laboratory conforms to the
claim. Nonetheless, if the |𝐸n| ≤ 1 test is passed, the CMC claim
of the laboratory is considered correct. This means, as recalled in
Section 2, that the laboratory, provided that all the further necessary
conditions are met, will be internationally recognised as being capable
of measuring measurands similar to 𝑋 in such a way that its estimates
are ‘close’ to the true values of those measurands.3 Or, to say better,
that there is a 95% probability that the true values of the measurands lie
within the interval spanned by the estimate plus or minus the expanded
uncertainty. In the following sections we will try to show that this weak
acceptance criterion can lead to perverse consequences.

2 To be compared with the more stringent requirement 𝜒2
obs ≤ 𝜈 +

√

2𝜈
mentioned in Section 3, corresponding to a more reassuring value 1−𝛼 = 0.880.

3 What exactly is meant by ‘similar’ is the topic of a never-ending debate
(how far does the light shine etc.), fortunately beyond the scope of this paper.
3

5. CMC assessment – Our proposal

We argue that the validation of a claimed CMC is a true conformity
assessment, and that the success in the test |𝐸n| ≤ 1, being just
a (considerably weak) consistency test, is not adequate to validate
meaningfully the CMC. Conformity assessment requires decision rules
concerning the acceptance (or rejection), and involves risk evaluation.
In this section we consider the CMC assessment from the viewpoint of
a conformity assessment.

5.1. Conformity assessment – a reminder

To assess the conformity of an item with a specified requirement,
according to the document that we consider as the gold standard in
the field [43],

• the item is distinguished by a single scalar quantity;
• an interval [𝑇L, 𝑇U] of permissible values of the quantity is speci-

fied;
• the property can be measured and the measurement result . . .

expressed in a manner consistent with the principles of the
GUM. . .

Under these three conditions, the conformity assessment consists of
the following steps:

• measure the property of interest;
• compare the measurement result with the specified requirement;
• decide on a subsequent action.

5.2. Key comparison as a conformity assessment

To position a KC exercise within the framework of conformity
assessment, we assume

1. the item is the travelling standard, distinguished by the quantity
it materialises;

2. the property of interest is, strictly speaking, the CMC claimed by
that laboratory (typically 𝑈𝑥, the expanded uncertainty declared
in the comparison exercise). In practice, the CMC is probed, so to
say, by 𝛥𝑋 = 𝑥−𝑋, the deviation of the laboratory estimate from
the true value of the measurand; it is estimated by 𝛥𝑥 = 𝑥−𝑥ref .

3. the specified requirement is thus −𝑈𝑥 ≤ 𝛥𝑋 ≤ 𝑈𝑥. The (two-
sided) tolerance interval [𝑇L, 𝑇U] is [−𝑈𝑥,+𝑈𝑥]; it follows that
𝑈𝑥 =

[

𝑇U − 𝑇L
]

∕2 = 𝑇 ∕2, where 𝑇 is the tolerance as defined
in [43].

4. finally, we suggest the following (binary) decision rule: the claim
of the laboratory is accepted if the conformance probability 𝑝c (see
Section 5.3) has at least a stipulated value; otherwise the claim
is rejected and suitable corrective actions are to be taken.

The fourth point above is our proposed alternative to the current
decision rule, i.e. that the claim is accepted if |𝐸n| ≤ 1.

5.3. Conformance probability

The conformance probability 𝑝c is defined as the probability that an
item fulfils a specified requirement ([43], definition 3.3.7). In the case of
a CMC claim, it represents the probability that the deviation 𝛥𝑋 of the
estimate provided by the laboratory from the true value is within the
tolerance interval claimed by the laboratory itself. The conformance
probability is thus the fraction of the state-of-knowledge probability
distribution for 𝛥𝑋 = 𝑥−𝑋, where 𝑋 is the true value, that falls within
the tolerance interval [−𝑈𝑥,+𝑈𝑥], i.e.

𝑝c =
+𝑈𝑥

𝑔𝛥𝑋 (𝜉)d𝜉 = 𝐺𝛥𝑋
(

𝑈𝑥
)

− 𝐺𝛥𝑋
(

−𝑈𝑥
)

, (8)
∫−𝑈𝑥
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where 𝑔𝛥𝑋 (𝜉|𝑥, 𝑥ref ) and 𝐺𝛥𝑋 (𝑧) = ∫ 𝑧
−∞ 𝑔𝛥𝑋 (𝜉)d𝜉 are the probability den-

sity function (PDF) and the cumulative distribution function (CDF) for
𝛥𝑋, respectively.

We adopt a Gaussian (normal) PDF for simplicity and for its
widespread use. In Bayesian inference, and assuming a Gaussian like-
lihood, this PDF would be a reasonable approximation of the posterior
for 𝛥𝑋, given a non-informative prior (see, e.g. [43], 7.2). Other choices
might be more appropriate in specific cases.

We thus write the PDF 𝑔𝛥𝑋 (𝜉|𝑥, 𝑥ref ) for 𝛥𝑋 as

𝑔𝛥𝑋 (𝜉|𝑥, 𝑥ref ) = 𝐍[𝛥𝑥, 𝑢2(𝑥ref )] =
1

√

2𝜋𝑢(𝑥ref )
exp

[

−1
2

(

𝜉 − 𝛥𝑥
𝑢(𝑥ref )

)2
]

. (9)

The PDF (9) has expectation 𝛥𝑥, the estimate of 𝛥𝑋. As to the
ariance, we argue that, in the context of conformity assessment, the
nly uncertainty in 𝛥𝑋 is the one about 𝑋, for which only an estimate,
ref , is available. Such a choice for the variance of the PDF (9) for 𝛥𝑋

epitomises the fundamental difference between a consistency test and a
conformity assessment. In the former, in which two estimates (𝑥ref and
) of the same true value 𝑋 are compared to check their consistency,
he uncertainties associated with both estimates play similar roles. In
he latter, the estimate 𝑥 is checked against the true value to ascertain
hether it fulfils the requirement, that is, whether its distance from

he (uncertain) true value is smaller than the tolerance interval. In
his second exercise, the (squared) uncertainty 𝑢2(𝑥ref ) about the true
alue 𝑋 constitutes the variance of the PDF for the measurand; the
xpanded uncertainty declared by the candidate laboratory, 𝑈𝑥, forms
he tolerance interval. The two roles are distinct, and it would be mean-
ngless to use 𝑢𝑥 in both the tolerance interval, that is, the integration
imits, and in the PDF for the measurand. It is worth recalling that an
ncertainty is associated with the estimate, and is not the uncertainty of
he estimate (as sometimes can be found in loosely written documents).
here is no such a thing as the uncertainty about the estimate, there

s rather, associated with the estimate, an uncertainty about the true
alue, and this latter uncertainty is irrelevant in this specific conformity
ssessment. This attitude is aligned with the general scheme of the
ayesian view of probability (see, e.g. [44,45]).

A more conventional, in our opinion mistaken choice, would be to
nclude in the uncertainty the contribution 𝑢𝑥 and 𝑢(𝑥, 𝑥ref ). In any case,
he considerations of the next section hold independently of the choice
f the PDF, the choice only affecting (mildly) the values of 𝑝c.

5.4. Decision rules and conformance probability with the current 𝐸n crite-
rion

We discuss here the conformance probability (8) yielded by the
current criterion, by which the CMC is validated if |𝐸n| ≤ 1, i.e.,
|𝛥𝑥| ≤ 𝑈𝛥𝑥, where 𝑈𝛥𝑥 is defined as in Eq. (7). In practice, the expanded
ncertainty 𝑈𝛥𝑥 dictates the acceptance interval

[

𝐴L, 𝐴U
]

=
[

−𝑈𝛥𝑥, 𝑈𝛥𝑥
]

or 𝛥𝑥 (see [43], definition 3.3.9). 𝑈𝛥𝑥 can be greater or smaller than
𝑈𝑥, depending on whether the covariance is equal to zero or not,
respectively (note that the covariance, and thus 𝜌, are always positive
in comparisons). Accordingly, the acceptance interval can be greater or
smaller than the tolerance interval [−𝑈𝑥,+𝑈𝑥].

When 𝜌 = 0 the acceptance interval is greater than the tolerance
interval and the criterion |𝐸n| ≤ 1 is equivalent to a guarded rejection
decision rule (see [43], 8.3.3). This implies a negative guard band
𝑤 = 𝑈𝑥 − 𝑈Δx (see [43], 3.3.11), thus reducing the conformance prob-
ability and correspondingly increasing the consumer’s risk 𝑅∗

C = 1 − 𝑝c
(see [43], 9.3.2).

Vice versa, when 𝜌 > 0 the acceptance interval is smaller than
the tolerance interval, and the criterion |𝐸n| ≤ 1 is equivalent to a
guarded acceptance decision rule (see [43], 8.3.2). The guard band is here
positive, thus increasing the conformance probability and reducing the
consumer’s risk.

In either cases, the amplitude of the guard band depends on 𝑢(𝑥 ).
4

ref
What is relevant here is that, with the current criterion, an appar-
ently unambiguous decision rule, i.e., that the CMC claim is validated
if |𝐸n| ≤ 1, corresponds in reality to different (and contrasting) deci-
sion rules, depending on elements other than the performance of the
candidate laboratory (epitomised by 𝛥𝑥 and 𝑢𝑥), such as 𝜌 and 𝑢(𝑥ref )
(as concerns the severity of the decision rule). The unpleasant con-
sequence is that the consumer’s risk is non-homogeneous along the
CMCs currently registered in the KCDB. Even worse, the risk is currently
unknown, its calculation having been neglected so far.

A relevant case is when a random instability of the measurand
causes an increase of 𝑢(𝑥ref ) and thus an increase of the guard band
and of the consumer’s risk. Some investigations [46,47] considered
the situation described above in terms of loss of statistical power of
the 𝐸n criterion. Therefore, they remain in the context of consistency
testing, and do not introduce conformity-assessment considerations.
Our opinion in this respect is that the random instability should be
viewed as an intrinsic uncertainty of the measurand. As such, it should
affect all the estimates of the measurand, contrary to the current
practice, in which it affects only the uncertainty of the KCRV. In our
proposal, the additional uncertainty contributes both to the variance of
the PDF for the measurand and to the tolerance interval. The resulting
conformance probability seems to be less affected than the normalised
error in this case, which deserves further investigation.

5.5. Worst-case conformance probabilities

We study here the worst-case conformance probability (|𝐸n| = 1) in
various situations that occur in practice, assuming that the measurement
capability index (see [43], 7.6.2) 𝐶m = 𝑢𝑥∕𝑢(𝑥ref ) ≥ 1, i.e., that 𝑢(𝑥ref )
is never larger than 𝑢𝑥. This condition is a strict requirement, and
holds true for all interlaboratory comparisons, be they KCs or bilateral
comparisons between a reference laboratory and a laboratory candidate
to accreditation.

Conformance probabilities, as given by the integral (8) with the
PDF (9), were calculated using CaSoft [48,49], a dedicated software
of intuitive usage. The results were double-checked using Wolfram
Mathematica 13.0.

We consider separately the two cases, 𝜌 = 0 and 𝜌 > 0.

1. 𝜌 = 0.
This situation occurs when the estimate of the measurand is
obtained from an external measurement (as frequently happens
in gas-analysis KCs and almost invariably in proficiency tests,
PTs).

(a) When 𝑢(𝑥ref ) ≪ 𝑢𝑥, the acceptance interval virtually coin-
cides with the tolerance interval. In this scenario of simple
acceptance (see [43], 8.2), the conformance probability
runs from a minimum of 50% for |𝐸n| = 1 (i.e., |𝛥𝑥| ≈ 𝑈𝑥)
to a maximum close to 100% for |𝐸n| = 0 (i.e., |𝛥𝑥| = 0):
0.5 ≤ 𝑝c < 1.
We reasonably set a threshold 𝑢(𝑥ref ) ≤ 𝑢𝑥∕3 (i.e., 𝐶m = 3)
for this case.4 At this threshold, both 𝑈𝛥𝑥 and the ac-
ceptance interval increase by a negligible 5.4%. The cor-
responding guard band is 𝑤 = −0.16𝑈 (𝑥ref ), but the
conformance probability, for |𝐸n| = 1 decreases to a little
reassuring 𝑝c = 37%.

(b) When 𝑢(𝑥ref ) is meaningful, say, 𝑢(𝑥ref ) > 1∕3𝑢𝑥, the
decision rule is that of a guarded rejection, thus increasing
the consumer’s risk to the advantage of the laboratory.
The guard bands are negative, and can be as great as
0.41𝑈𝑥 in the extreme case 𝑢(𝑥ref ) = 𝑢𝑥, i.e. 𝐶m = 1.

4 This is a common limit in legal metrology, see [43], EXAMPLE in 8.2.3.
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A result yielding |𝐸n| = 1 would be accepted with a
conformance probability of barely 𝑝c = 20%. This situ-
ation represents the limiting case for which a result of
the comparison is accepted, and is the most favourable
condition for the participating laboratory.
However, even for the more realistic value 𝑢(𝑥ref ) = 0.8𝑢𝑥
(𝐶m = 1.25), the conformance probability would still be a
mere 𝑝c = 24%.

2. 𝜌 > 0.
The effect of a finite (positive) correlation coefficient is to reduce
𝑢𝛥𝑥 and thus the acceptance interval. In this case, the criterion
|𝐸n| ≤ 1 is equivalent to a guarded acceptance, thus reducing
the consumer’s risk at the expenses of the laboratory.

(a) The situation 𝑢(𝑥ref ) ≪ 𝑢𝑥 represents the ideal case of a
well-behaving KC, in which the measurand is stable and
its estimate is obtained as the weighted mean of a highly
consistent data set. In this case, 𝜌 = 𝑢(𝑥ref )∕𝑢𝑥.
At the threshold 𝐶m = 3, both 𝑈𝛥𝑥 and the acceptance
interval decrease by a negligible 5.4% and the correspond-
ing guard band is now positive: 𝑤 = 0.17𝑈 (𝑥ref ).
As concerns conformance probability, for |𝐸n| = 1 it is
𝑝c = 63%.

(b) When 𝑢(𝑥ref ) > 𝑢𝑥∕3, its impact on 𝑈𝛥𝑥 becomes signifi-
cant.
For example, considering the extreme yet realistic case
𝜌 = 𝑢(𝑥ref )∕𝑢𝑥 and 𝑢𝑥 ≈ 𝑢(𝑥ref ), the uncertainty 𝑈𝛥𝑥 ≈ 0.
This last situation represents the worst condition for the
participating laboratory, yet it can occur i) in bilateral
comparisons between laboratories with similar capabili-
ties, where one laboratory not only provides the reference
value but also the traceability to the other participating
laboratory; or, ii) (less markedly) when in a KC the refer-
ence value is estimated by a few laboratories with similar
uncertainty.
As an example, if 𝑢(𝑥ref ) = 0.8𝑢𝑥 and 𝜌 = 𝑢(𝑥ref )∕𝑢𝑥 = 0.8,
the positive guard band would be 𝑤 = 0.5𝑈 (𝑥ref ), and the
conformance probability 𝑝c = 84%.
This situation may arise in bilateral as well as in multilat-
eral comparisons with a small number of participants, or
in comparisons for accredited laboratories.

As a general consideration, when 𝑢(𝑥ref ) is meaningful, the guard
bands, positive or negative depending on 𝜌, increase in width and
the difference between tolerance and acceptance intervals can become
so large that the consumer’s risk attains beyond-reasonable (small or
great) values.

Table 1 summarises the minimum possible conformance probabili-
ties for the various cases considered.

As a last remark, consider a laboratory A obtaining traceability
from a laboratory B and willing to validate its CMC by participating
in a bilateral comparison. For A it is more convenient to perform the
comparison with a third laboratory C (having uncertainties comparable
to those of B) rather than with B itself. In the former case there
is no correlation and the decision rule is a guarded rejection, thus
favourable to the laboratory. In the latter, the decision rule is a guarded
acceptance. The difference may be decisive as concerns the acceptance
or rejection of the claim.

5.6. Decision rule

As already mentioned in Section 5.2, we propose that in the analysis
of a comparison (any comparison), the conformance probability 𝑝c
be calculated using Eqs. (9) and (8) (when is reasonable to assume
underlying normality). A minimum threshold 𝑝cL should be established
5

for 𝑝c and the acceptance criterion should be 𝑝c ≥ 𝑝cL. If the criterion m
Table 1
Worst-case conformance probabilities (|𝐸n| ≈ 1); u: arbitrary unit.
𝑢(𝑥ref )∕𝑢𝑥 𝜌 = 0 𝜌 = 𝑢(𝑥ref )∕𝑢𝑥

𝛥𝑥max∕u 𝑝c∕% 𝛥𝑥max∕u 𝑝c∕%

≈0 ≈𝑈𝑥 ≈50 ≈𝑈𝑥 ≈50
1/3 𝑈𝑥 + 0.16𝑈 (𝑥ref ) 37 𝑈𝑥 − 0.17𝑈 (𝑥ref ) 63
0.8 𝑈𝑥 + 0.35𝑈 (𝑥ref ) 24 𝑈𝑥 − 0.5𝑈 (𝑥ref ) 84
≈1 ≈

√

2𝑈𝑥 ≈20 ≈0 ≈100

is not met, i.e. if 𝑝c < 𝑝cL, 𝑈𝑥, the uncertainty of the CMC claim, should
be adjusted in such a way that 𝑝c reaches the threshold.

There remains to decide a suitable threshold. The simple-acceptance
decision rule, described in Section 5.5, sets 𝑝cL = 50%. Also, the most
commonly adopted corrective practice, to enlarge 𝑈𝑥 so that 𝑈𝑥 = 𝛥𝑥,
follows essentially this decision rule.

Setting 𝑝cL = 50% would represent a considerable progress with
respect to the current situation, in which a result can be accepted with
a conformance probability as low as 20.4%.

However, we argue that the threshold 𝑝cL = 50% is still too low
or, to say better, that the consumer’s risk is too high. One should
be aware that 𝑝c = 50% means that there is a 50% chance of being
incorrect, whatever the decision, acceptance or rejection. As a conse-
quence, there is a 50% risk that measurement results produced by the
accepted laboratory are not traceable5 to the corresponding units, an
uncomfortable situation in our opinion, for which corrective measures
should be considered. A possible action would be to raise the value of
𝑝cL, thus adopting a guarded acceptance.

6. Example

We calculated the conformance probabilities 𝑝c in a real case, the
Key Comparison APMP.L-K4 [51], which relates to diameter measure-
ment conducted in 2008–2010 with 𝑛 = 14 participating laborato-
ries. The same comparison is analysed in [9]. In this comparison,
the KCRV was estimated as the weighted mean of the participants’
results, after removing the data from laboratories 2, 7 and 8. The KCRV
was 𝑥ref = 0.459 μm with 𝑢

(

𝑥ref
)

= 0.027 μm. The small uncertainty
of the KCRV compared to those of the participants is typical of a
well-behaving KC.

Table 2 shows the reported deviations 𝑥𝑖 from the nominal value of
11.95mm of the internal diameter of a ring and the associated standard
uncertainties 𝑢(𝑥𝑖), together with the deviations from the KCRV, 𝛥𝑥𝑖,
and the associated uncertainties 𝑢(𝛥𝑥𝑖). The last two columns give
the normalised errors and the conformance probabilities calculated as
explained in Section 5.5. As expected, the conformance probabilities
confirm generally the current acceptance criterion based on the nor-
malised error, yet some surprises arise when 𝐸n is close to 1. For
example, laboratory 6 has 𝐸n = 0.9, yet, 𝑝c = 99.8%, a very high
value. So, a claim (anyway accepted), yielding a comparatively poor
performance if evaluated using the normalised error, does indeed have
a very low consumer’s risk. On the contrary, laboratory 12, which is
also the one with the lowest uncertainty, has 𝐸n = 1.1, so that the result
would not be accepted. However, 𝑝c = 68%, a value higher than the
current threshold. We think that rejecting a result with 𝑝c = 68%, and
accepting results with 𝑝c < 50%, as currently happens, is unfair. The
result should be accepted, and it would be accepted should the method
we propose be adopted.

This simple example highlights the perverse consequences of the un-
controlled guard bands introduced by the current validation criterion.

In conclusion, the decision based on 𝑝c is more reliable than that
based on 𝐸n, because it is more closely linked to the effective capabil-
ities of the laboratory, as demonstrated when 𝐸n is close to 1.

5 We are aware that traceability, as currently defined (see [12], definition
.41), is a yes/no property. We adopt here a broader view of the term. For a
otivation of this choice, see [50].
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Table 2
Data, normalised errors and conformance probabilities for the Key Comparison
APMP.L-K4.

Lab 𝑥𝑖∕μm 𝑢(𝑥𝑖)∕μm 𝛥𝑥𝑖∕μm 𝑈 (𝛥𝑥𝑖)∕μm 𝐸n 𝑝c∕%

1 0.43 0.133 −0.029 0.260 −0.1 100
2 0.16 0.0875 −0.299 0.183 −1.7 0
3 0.50 0.30 0.041 0.598 0.1 100
4 0.43 0.087 −0.029 0.165 −0.2 100
5 0.45 0.066 −0.009 0.120 −0.1 100
6 0.00 0.27 −0.459 0.537 −0.9 100
7 −0.30 0.22 −0.759 0.433 −1.7 0
8 −0.99 0.144 −1.449 0.293 −5.0 0
9 0.23 0.28 −0.229 0.557 −0.4 100
10 0.27 0.075 −0.189 0.140 −1.2 7
11 0.35 0.177 −0.109 0.350 −0.3 100
12 0.54 0.047 0.081 0.077 1.1 68
13 0.53 0.064 0.071 0.116 0.6 98
14 0.24 0.58 −0.219 1.159 −0.2 100

7. CMCs in mass metrology

The landmark revision of the SI that came into force on 19 May
2020 implies that in principle every laboratory capable of realising the
kilogram in terms of the Planck constant can disseminate the unit on
its own. In practice, some experimental results suggested to postpone
this situation until a better agreement among the various realisations is
achieved, in order to preserve the very good worldwide harmonisation
of mass metrology [52]. The Consultative committee for mass and
related quantities, CCM, established a strategy for the dissemination of
the unit [53], largely based on a previous paper [54]. The key points
relevant here are:

• The unit of mass acquires an uncertainty component due to the
realisation of the unit, its value at the moment of writing [55]
being 𝑢CV = 20 μg (where CV stands for the Consensus Value from
which the traceability chain starts);

• Accordingly, all the 1 kg mass standards inherit this additional
component of uncertainty, as well as all multiples and sub-
multiples of the kilogram, suitably scaled.

As the typical uncertainties in the comparison of 1 kg standards are
much smaller than this additional component, the future mass compar-
isons will be characterised by a very high correlation among the results
of all the participants.

As an example we consider a fictitious Key Comparison for a 1 kg
mass standard with 𝑛 = 6 participating laboratories. Table 3 (columns
2 and 3) and Fig. 1 show the reported deviations 𝑥𝑖 from the nominal
alue of 1 kg and the associated expanded uncertainties. With these
ata, and a common covariance 𝑢𝑖,𝑗 = 400 μg2 (𝑖, 𝑗 = 1,… , 6, 𝑖 ≠ 𝑗), we

obtain from Eq. (3) 𝜒2
obs = 22.2, far exceeding the limit discussed in

Section 3, in this case 𝑞0.95 = 11.1.
We thus derive the KCRV 𝑥ref as the WM of the largest consistent

subset [56], in this case intuitively the set of five results after re-
moval of result 6, with 𝜒2

obs = 9.48 ≈ 𝑞0.95, obtaining 𝑥ref = −0.12 μg with
(𝑥ref ) = 21.42 μg, 𝑈 (𝑥ref ) = 42.84 μg, the green horizontal lines in Fig. 1
epresenting the corresponding coverage interval. We then calculate
𝑥𝑖 = 𝑥𝑖 − 𝑥ref and 𝑈 (𝛥𝑥𝑖) from 𝑢2(𝛥𝑥𝑖) = 𝑢2(𝑥𝑖) + 𝑢2(𝑥ref ) − 2𝑢(𝑥𝑖, 𝑥ref )

(columns 3 and 4 in Table 3). The covariance term for 𝑖 = 1,… , 5 is, as
it is well-known, 𝑢(𝑥𝑖, 𝑥ref ) = 𝑢2(𝑥ref ), so that 𝑢2(𝛥𝑥𝑖) = 𝑢2(𝑥𝑖) − 𝑢2(𝑥ref ).
As to laboratory 6, a superficial reasoning (which we made in a first
instance) would conclude that 𝑢(𝑥6, 𝑥ref ) = 0, on the argument that 𝑥ref
and 𝑥6, the latter being excluded from the calculation of the former,
should be uncorrelated. It can be demonstrated that (in agreement
with common sense) 𝑥6 and 𝑥ref are indeed correlated, their covariance
being 𝑢(𝑥6, 𝑥ref ) = 𝑢2CV = 400 μg2.

Columns 5 and 6 give normalised error and conformance probabil-
ity, respectively. Surprisingly, according to the former, laboratory 1
6

turns out not to be consistent. This result is in striking contrast with
Fig. 1. A fictitious mass comparison. Error bars indicate expanded uncertainties and
green lines a coverage interval [−𝑈 (𝑥ref ), 𝑈 (𝑥ref )] for 𝑥ref = −0.1.

Table 3
Example of mass comparison.

Lab 𝑥∕μg 𝑈𝑥∕μg 𝛥𝑥∕μg 𝑈 (𝛥𝑥)∕μg 𝐸n 𝑝c∕%

1 −16.0 44.7 −15.9 12.8 −1.24 91
2 22.0 50.0 22.1 25.8 0.86 90
3 2.0 89.4 2.1 78.5 0.03 100
4 15.0 64.0 15.1 47.6 0.32 99
5 126.0 126.5 126.1 119.0 1.06 50
6 60.0 50.0 60.1 33.7 1.78 32

a simple visual inspection of Fig. 1, and is a perverse consequence of
the large covariance. Note that assuming 𝑢(𝑥6, 𝑥ref ) = 0 would lead to
𝑈 (𝛥𝑥6) = 66 μg and 𝐸n = 0.91, so that the claim of laboratory 6 would
be accepted. The considerations above represent a word of warning
as concerns the correct calculation of 𝐸n in future mass comparisons.
On the contrary, the conformance probability, calculated according
to Eq. (8), correctly (and easily) captures the real situation.

8. Conclusions

We think that the score |𝐸n| ≤ 1 is too weak in any case in a
consistency test, for the reasons discussed in Section 4. Furthermore,
it is unacceptably weak in the evaluation of the performance of a
candidate laboratory in a KC in view of the possible acceptance of a
CMC.

In addition, behind that seemingly unique decision rule, different
rules – guarded acceptance, simple acceptance and guarded rejection –
come into play depending on the specific comparison.

Unpleasant consequences of the facts expounded above are:

• CMC claims are accepted with a conformance probability that can
be well below 𝑝c = 50% (see Section 5.5), and

• claims having a far higher conformance probability can be re-
jected (see Section 6).

The former fact implies that it is more likely to be wrong than right in
accepting the claim.

The latter fact is unfair and simply unacceptable.
We argue that the key parameter in the decision whether to accept

or not a CMC claim should be the conformance probability, rather than
the normalised error. After a check of the consistency of the data set,
the acceptance or rejection (and possibly adaptation) of an individual
CMC should be decided using conformance probability, which therefore
should be calculated using Eq. (8) with the appropriate PDF 𝑔𝛥𝑋 (𝜉)
(possibly a normal in most cases).

In this new paradigm, a suitable lower threshold for conformance
probability should be agreed at the international level, similarly to the
upper threshold so far agreed for the normalised error. Equivalence



Measurement 192 (2022) 110865A. Malengo and W. Bich

U

𝜇

should be granted for those laboratories whose claims have a con-
formance probability greater than the threshold. In the negative, the
uncertainty claim should be increased so that the threshold is reached.
As concerns the value of the threshold, it is related to the decision
rule. We favour a guarded acceptance over simple acceptance, for the
reasons discussed in Section 5.6.

Ultimately, the conformance probability, in the case of a CMC claim,
is strictly related to the risk of losing traceability for measurement
results based on calibrations and measurements made by the laboratory
under scrutiny. By adopting the paradigm we proposed here, the risk
can be at least known and, ideally, controlled.
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Appendix. Normalised error and 𝝌𝟐

We calculate here the 𝜒2
obs statistic of Eq. (4) for a data set with two

data.
In this case, introducing the residuals 𝑟𝑖 = 𝑥𝑖 − 𝜇̂,

𝜒2
obs =

[

𝑟1 𝑟2
]

[

𝑢21 𝑢1,2
𝑢1,2 𝑢22

]−1 [
𝑟1
𝑟2

]

=
𝑟21𝑢

2
2 + 𝑟22𝑢

2
1 − 2𝑟1𝑟2𝑢1,2

𝑢21𝑢
2
2 − 𝑢21,2

. (10)

sing the weighted mean of the two data

̂ =

(

𝑢22 − 𝑢1,2
)

𝑥1 +
(

𝑢21 − 𝑢1,2
)

𝑥2
𝑢21 + 𝑢22 − 2𝑢1,2

(11)

as location estimator, the residuals 𝑟𝑖 take the form

𝑟1 =

(

𝑢2𝑖 − 𝑢1,2
) (

𝑥1 − 𝑥2
)

𝑢21 + 𝑢22 − 2𝑢1,2
(12)

and

𝑟2 =

(

𝑢22 − 𝑢1,2
) (

𝑥2 − 𝑥1
)

𝑢21 + 𝑢22 − 2𝑢1,2
(13)

and, by substituting Eqs. (12) and (13) into Eq. (10)

𝜒2
obs =

(

𝑥1 − 𝑥2
)2

𝑢21 + 𝑢22 − 2𝑢1,2
= 4𝐸2

n . (14)

The 𝜒2
obs is, not too surprisingly (and up to a factor) the square of

the normalised error 𝐸n, i.e., the quotient of the difference between two
estimates and the uncertainty of the difference.

It is worth noting that, ceteris paribus, 𝜒2
obs increases as correlation

between estimates increases. For 𝑢1,2 = 𝑢21, 𝜒
2
obs is

𝜒2
obs =

(

𝑥1 − 𝑥2
)2

𝑢22 − 𝑢21
, (15)

which diverges fast for 𝑢 → 𝑢 , unless 𝑥 → 𝑥 .
7
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