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Observation of a Spinning Top in a Bose-Einstein Condensate

R. N. Bisset1,∗ S. Serafini1, E. Iseni1, M. Barbiero2,1, T. Bienaimé1, G. Lamporesi1, G. Ferrari1, and F. Dalfovo1

1INO–CNR BEC Center and Dipartimento di Fisica, Università di Trento, 38123 Povo, Italy and
2Politecnico di Torino, Dipartimento di Elettronica e Telecomunicazioni,

Corso duca degli Abruzzi 24, 10129 Torino, Italy

Boundaries strongly affect the behavior of quantized vortices in Bose-Einstein condensates, a phe-
nomenon particularly evident in elongated cigar-shaped traps where vortices tend to orient along a
short direction to minimize energy. Remarkably, contributions to the angular momentum of these
vortices are tightly confined to the region surrounding the core, in stark contrast to untrapped con-
densates where all atoms contribute h̄. We develop a theoretical model and use this, in combination
with numerical simulations, to show that such localized vortices precess in an analogous manner
to that of a classical spinning top. We experimentally verify this spinning-top behavior with our
real-time imaging technique that allows for the tracking of position and orientation of vortices as
they dynamically evolve. Finally, we perform an in-depth numerical investigation of our real-time
expansion and imaging method, with the aim of guiding future experimental implementation, as
well as outlining directions for its improvement.

I. INTRODUCTION

Bose-Einstein condensates (BEC) are ideally suited for
the study of quantum vortices, owning to their purity
and high-degree of tunability [1], and this inherent flexi-
bility has inspired experimental and theoretical works in
a wide variety of settings. Vortex lattices provide the
fundamental means for bulk superfluid flow in rotating
BECs [2–5] while, on the other hand, vortices also lie at
the heart of quantum turbulence in nonequilibrium sys-
tems [6–11]. Boundaries play a central role, and when a
vortex line pierces a condensate’s surface it does so at an
angle perpendicular to it. When a vortex is positioned
off-center, it tends to orbit around the condensate center
at an increasing frequency as it spirals outward due to
dissipation [12–14]. Under the influence of a pancake-
shaped trapping potential, vortices tend to minimize
their energy by aligning along the short direction and,
at finite temperature, the vortex-unbinding Berezinskii-
Kosterlitz-Thouless phase transition was studied [15–20].
In three dimensions, in addition to vortex lines [21, 22],
vortices can fold to create rings [23–28] and even more
exotic structures like hopfions [29–31] and Chladni soli-
tons [32]. Spiralling undulations of the cores, known as
Kelvin waves, are responsible for the so-called Kelvin-
wave cascade [6, 7].

In three-dimensional (3D) cigar-shaped traps the most
stable defect is the so-called solitonic vortex, a short
vortex line that pierces the condensate through its side
[26, 33–36]. While they are indeed vortices, solitonic vor-
tices possess some solitonic characteristics such as being
more localized and, on the coarse-grain scale, they cause
a π phase jump between each end of the cigar which re-
sults in a planar density depletion after expansion [37].
Solitonic vortices, which were recently realized in exper-
iments with bosons [26, 38] and fermions [39], tend to be
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long-lived and orbit about the condensate center on an
elliptical path, along which the core remains surrounded
by a roughly constant density.

We experimentally produce solitonic vortices in cigar-
shaped traps that are inherited from the condensate
formation process, thanks to the Kibble-Zurek mecha-
nism [40, 41] (also see [42–48]). A BEC is formed by a
cooling quench across the transition temperature, where
a symmetry-breaking phase transition occurs. If the
quench is fast enough, distant regions of the system do
not have sufficient time to communicate and hence they
randomly develop order parameters disparate from one
other. Defects, such as dark solitons or quantized vor-
tices, then become trapped at the boundaries between
such regions. With an appropriate imaging technique
we track the axial position and the orientation of the
vortex lines which remain in our BECs, as remnants of
the Kibble-Zurek mechanism and the subsequent post-
quench dynamics.

Some of these vortices exhibit a peculiar rotation of
their core around the long axis of the trap as depicted
in Fig. 1 (a). In this work we show that such a rotation
is caused by a tilt of the vortex line out of the radial
plane and towards the symmetry axis, as shown in Fig. 1
(b); the tilt implies an increase of the vortex line length,
with a consequent energy cost and an induced torque.
The torque produces the precession of the vortex around
the axial direction, in an analogous manner to a classical
spinning top. The analogy works well because the soli-
tonic vortex is a localized object, in contrast to regular
3D vortices.

We verify this spinning top behavior by performing nu-
merical simulations, using the Gross-Pitaevskii equation
(GPE). We find that a solution of the GPE exists corre-
sponding to a tilted vortex, which is stationary in a refer-
ence frame rotating around the long axis of the trap. We
then use such a stationary state as an input of real time
GP simulations in the nonrotating BEC and we observe
that the vortex line keeps rotating at a constant angular
velocity. We use the GPE also to simulate the extraction
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Figure 1. Illustration of solitonic vortex precession. The
shaded region represents the isosurface at half the peak den-
sity of the condensate, while the green lines indicate the vor-
tex core. (a) An example of precession around the x axis by
a quarter of a period, changing from a vertical to a horizon-
tal orientation. On this scale the axial tilt is too small to be
visible. (b) Condensate segment containing a tilted solitonic
vortex whose core lies in the y = 0 plane with a tilt angle θ
into the long (x) axis of the trap [the tilt angle is larger here
than for the vortex in (a)]. The dashed line is a vertical refer-
ence. The vortex experiences a torque τ that acts to reduce
the core length, i.e., by attempting to reduce θ. An arrow in-
dicating the direction of τ , as well as arrows for the directions
of the angular momentum of the vortex L and precession Ω,
are shown. The senses of the vortex and the precession are
indicated by the bottom and top blue arrows, respectively.

and expansion of atoms as performed in the experiments,
in order to reproduce our minimally-destructive imaging
scheme that is able to track the orientation and position
of the spinning vortices in real time.

The paper is structured as follows: In Sec. II A we
present our spinning top theory for the solitonic vortex.
In Sec. II B, we outline our numerical approach for sim-
ulating real-time dynamics of 3D cigar-shaped conden-

sates. We also explain how to obtain solitonic vortex
initial states for our precession simulations. The focus of
Sec. III A is the comparison of our spinning top model
with our numerical results; in particular, we calculate
the precession frequency versus the axial tilt angle θ (see
Fig. 1 (b) for the definition of θ). In Sec. III B we outline
our experimental extraction procedure and provide de-
tails for how this is numerically simulated. Section III C
presents our experimental observations of solitonic vortex
spinning tops, alongside their numerical counterpart for
comparison. We also discuss our extraction and imaging
scheme, and suggest directions for its improvement. We
conclude with section IV.

II. FORMALISM

A. Theory of the BEC spinning top

In contrast to a vortex in an untrapped system the
solitonic vortex is a highly localized object. This local
character is what allows for a close analogy with the clas-
sical spinning top, and serves as the basis for our analytic
approach.

For an isolated straight vortex line in an untrapped
condensate, each atom contributes h̄ to the angular mo-
mentum regardless of the distance from the core. Conse-
quently, the angular momentum per unit length rapidly
diverges with increasing system size. Realistic trapped
systems, however, offer qualitative differences: close
boundaries in anisotropic traps act to restrict the super-
fluid flow, which limits the fraction of atoms that con-
tribute to the angular momentum to be only those in the
vicinity of the core. A solitonic vortex in a cigar-shaped
condensate is an excellent example, and Figs. 2 (c) and
(d) show that the dominant contributions to the angular
momentum are tightly localized about the core. Further-
more, as can be seen in Figs. 2 (a) and (b), the kinetic
energy density is also localized about the core.

One way for a vortex to decrease its energy is for its
core length to shorten. It follows, then, that a solitonic
vortex that is tilted by an angle θ into the long axis of
the trap, as shown in Fig. 1 (b), experiences a restoring
torque that acts to reduce θ. The torque τ modifies the
angular momentum L according to

τ =
dL

dt
= Ω× L , (1)

causing a precession Ω about the x axis, as illustrated in
Fig. 1. Note that we assume that the angular momen-
tum associated with the precession is much smaller than
the angular momentum of the vortex itself. The angular
precession frequency, in radians per second, is then given
by

Ω ≡ |Ω| = τ

L cos θ
, (2)
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Figure 2. Kinetic energy (a)(b) and angular momentum (c)(d) density of a solitonic-vortex stationary state in a nonrotating
BEC. The vortex core is aligned along the z axis, and we consider both parallel and perpendicular slices. Due to symmetry,
only the z-component gives a non-zero contribution to the total angular momentum, and here we plot its real part, i.e. Lz(x) =

<{ψ∗(x)L̂zψ(x)} where L̂z = h̄/i(x∂y − y∂x). The white lines denote where the Thomas-Fermi density is expected to vanish.
This data is produced by a GPE simulation of 8 × 105 23Na atoms with ω⊥/ωz = 10 and ω⊥/2π = 92 Hz, which gives
µ/h̄ω⊥ = 9.72.

where τ = |τ | and L = |L|.
The torque τ can be calculated as follows. The en-

ergy of an untilted solitonic vortex in a highly-elongated
condensate (ω⊥ � ωx, for radial and axial harmonic
trapping frequencies, respectively) has been calculated
[39, 49], to logarithmic accuracy, to be

E0 =
4

3

πn0h̄
2R⊥
m

ln

(
R⊥
ξ

)
, (3)

with ξ = h̄/
√

2mµ being the healing length, R⊥ =√
2µ/mω2

⊥ is the Thomas-Fermi radius in the tight-
confinement direction, n0 is the peak density and m is
the mass. Tilting the solitonic vortex so that the core de-
velops a nonzero axial (x) component, as shown in Fig. 1
(b), increases its energy. To lowest order in θ this is de-
scribed by E = E0/ cos θ, which produces a torque of
strength

τ =
dE

dθ
=

4

3
AE

πn0h̄
2R⊥
m

ln

(
R⊥
ξ

)
sin θ

cos2 θ
. (4)

The constant AE , to be determined numerically by
solving the GPE, is a correction factor to Eq. (3) and is
expected to be approximately unity. Its purpose is, both,
a way to quantify the accuracy of Eq. (3) for realistic
chemical potentials and 3D trapping, and to improve the
value of τ for the prediction of the precession frequency
given by Eq. (2). For the regime considered in our
simulations (i.e., µ/h̄ω⊥ = 9.72 and ω⊥/ωx = 10) we
find AE = 0.944, which is indeed close to unity.

As shown in Fig. 2 (c) and (d), the atoms contributing
to the angular momentum are predominantly confined to
the vicinity of the core, within a radius R⊥. If each of
these atoms contributes approximately h̄ then this gives
a total angular momentum,

L = ALπR
3
⊥n0h̄ , (5)

where AL is some constant, of order unity. We also cal-
culate this numerically and find that for the regime of
our simulations AL = 0.995.

Finally, by substituting Eqs. (4) and (5) into Eq. (2),
we obtain a prediction for the precession frequency,

ΩA

ω⊥
=
AE
AL

[
2 ln(2µ̃)

3µ̃

]
sin θ

cos3 θ
(6)

≈ AE
AL

[
2 ln(2µ̃)

3µ̃

]
θ , (7)

which is a function of the tilt angle θ and the dimension-
less chemical potential µ̃ = µ/h̄ω⊥.

B. Numerics

Our analytic predictions are supported by full numer-
ical simulations of the time-dependent GPE [50],

ih̄
∂ψ(x)

∂t
=

[
− h̄2

2m
∇2 + V (x) + g|ψ(x)|2

]
ψ(x), (8)
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where interactions are characterized by g = 4πh̄2as/m,
with as being the s-wave scattering length. We consider
a 3D harmonic trapping potential,

V (x) =
1

2
mω2

xx
2 +

1

2
mω2

yy
2 +

1

2
mω2

zz
2, (9)

that is cylindrically symmetric and elongated along the
x direction, i.e. ωx � ωy,z = ω⊥.

Initial states, for subsequent precession dynamics, are
created by making use of the rotating-trap GPE [50–52],

µψ(x) =

[
− h̄2

2m
∇2 + V (x) + g|ψ(x)|2 − ΩtrL̂x

]
ψ(x),

(10)

where Ωtr is the trap-rotation frequency and L̂x =
h̄/i(y∂z − z∂y), so that the axis of rotation is coincident
with the long (x) axis. The procedure begins by imprint-
ing an untilted solitonic vortex onto the ground state of
the GPE [Eq. (8)]. A tilted solitonic-vortex stationary
state is then obtained by evolving this state according to
Eq. (10) with imaginary time evolution; the adjustment
of Ωtr acts as a control knob for the tilt angle θ.

For the purpose of investigating the in-trap dynamics
of precessing solitonic vortices we consider N = 8 × 105

23Na atoms in a cigar-shaped trap, having ω⊥ = 10ωx.
The scattering length is 54.54(20) a0, for Bohr radius
a0 [53], and the radial trapping frequency is given by
ω⊥/2π = 92 Hz which then corresponds to µ/h̄ω⊥ = 9.72,
a system well within the Thomas-Fermi regime. Time
propagation is performed with a 4th order Runge-Kutta
integration method and a time step size of 1.7µs. The 3D
numerical grid for the simulation of in-trap dynamics has
size {Lx, Ly, Lz} = {229, 34.9, 34.9}µm, and there are
{Nx, Ny, Nz} = {600, 60, 60} points in the respective di-
rections. The grid has linear spacing and we employ fast
Fourier transforms to evaluate the kinetic energy terms
at each time step.

III. RESULTS

A. In-Trap Behavior: Numerics and Analytics

Recall from Fig. 1 (b) that a solitonic vortex that
is tilted into the long (x) axis of the trap will feel a
torque and precess about this axis without changing
its shape; in this part we numerically investigate how
the precession frequency Ω depends on the tilt angle
θ. In Sec. II B we outlined how to construct tilted
solitonic vortex states by solving the rotating-trap
GPE [Eq. (10)] and using its stationary states. It is
a relatively straightforward extension to turn off the
trap rotation and then to evolve these initial states in
real time, i.e. by solving Eq. (8). In fact, the resulting
real-time precession frequencies Ω were compared with
the corresponding values of Ωtr, used for initial state
preparation, as a means to check the convergence. The
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Figure 3. Precession frequency versus tilt angle for a solitonic
vortex. Full numerical results (plus signs) and the analytic
prediction ΩA (solid line) provided by Eq. (7) are displayed.
The red dashed line is a straight line to guide the eye, hav-
ing a slope that matches the first two numerical data points.
Note that the chemical potential used in Eq. (7) was chosen
to match that of the numerical simulations. Incidentally, the
difference in chemical potential due to the presence or absence
of a vortex has no discernible effect on the results presented
here. For Eq. (7) we use the numerically determined adjust-
ment factors AE = 0.944 and AL = 0.995 obtained from the
GPE (see main text). Parameters are the same as in Fig. 2.

numerical data are presented in Fig. 3 as plus symbols.
As expected from our analytic model [Eq. (7)], for small
tilt angles the precession frequency exhibits a linear
dependence although, remarkably, this nearly-linear
relationship extends up to around θ = 0.6 radians. The
agreement with the analytic prediction given by Eq. (7)
(solid line) is also quantitatively reasonable, with the
analytic prediction being around 27% smaller. It should
be noted that this discrepancy is not entirely surprising
given that the system is not a rigid body and, as the
vortex tilts, the superfluid flow has to contend with the
anisotropic boundary.

Next, we investigate how the shape of a tilted solitonic
vortex depends on a range of precession frequencies, from
Ω/2π = 0.5 Hz to 15.5 Hz, in Fig. 4 (a). The precession
phases are chosen such that the cores lie exclusively in the
y = 0 plane; incidentally, these were also used as initial
states for the dynamical simulations displayed in Fig. 3.
Remarkably, when the x-axis is multiplied by the central
slope of the corresponding vortex core, i.e., x→ x/ tan θ,
all profiles neatly collapse onto a single curve as shown
in Fig. 4 (b). The tendency for a vortex line to exit its
condensate at an angle perpendicular to the surface [54]
suggests that the most natural deformation, for a tilted
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Figure 4. (a) Vortex-core profiles of rotating-trap stationary
states for a selection of rotation frequencies, each separated
by 1 Hz, from Ω = 0.5 to 15.5 Hz. The thick red line marks the
initial state used for the real-time precession dynamics shown
in Fig. 6 (a). The dashed lines mark where the Thomas-Fermi
approximation predicts the density to vanish. (b) The same
vortex-core profiles collapse onto a single curve (black solid
lines) when the x-axis coordinates of each vortex are rescaled
by its central slope, dz/dx = 1/ tan θ. The thick blue curve
is a sine-function fit (see text) whereas the dashed red line
is a straight line, fitted to central slope, to guide the eye.
Parameters are the same as in Fig. 2.

(θ > 0) solitonic vortex, is a sine function

x = D sin(kz) , (11)

with k = π/(2R⊥) and amplitude D. It is worth noting
that this deformation is analogous to the lowest Kelvin
mode for a vortex of length 2R⊥, but with the distinction
that a Kelvin mode in a uniform superfluid is a helix
whereas the states considered here lie in a plane. If one
fits Eq. (11) to the profiles in Fig. 4, one finds a value of
k slightly smaller than expected, consistent with the fact

that the density is not quite zero in the region |z| > R⊥,
where it vanishes smoothly. In detail, for the condensate
in Fig. 4, the chemical potential is µ = 9.72h̄ω⊥ which
corresponds to a transverse Thomas-Fermi radius R⊥ =
4.41a⊥, where a⊥ =

√
h̄/mω⊥. The analytic Thomas-

Fermi prediction is then π/(2R⊥) = 0.36/a⊥, while a
best fit to the GPE data gives k = 0.30/a⊥.

Single bent vortices were studied in [22, 55–60] for
BECs in rotating traps. On the one hand, the so-called
S-shape vortices in cigar-shaped condensates with a fast
trap rotation about the long axis [22, 55, 56] can be seen
as the high Ωtr counterpart of our tilted solitonic vor-
tices. In fact, for large Ωtr, transverse vortices become
so stretched that they develop long straight portions,
aligned parallel to the trap’s long axis, hence losing their
solitonic-vortex character. Eventually, as the trap rota-
tion speed increases further, such a vortex continuously
evolves to become a perfectly straight line, coaxial with
the trap’s long axis. Furthermore, the cigar-shaped trap
of [55] was not symmetric about the trap’s long axis. This
means that a vortex stationary state in the rotating frame
would not simply precess if evolved in real time with the
trap’s rotation switched off. On the other hand, in the ex-
tremely dilute limit where kinetic energy dominates over
interaction energy, Ref. [60] found that instead of a sine-
shaped core the tilted ( θ > 0) solitonic vortex remains
as an almost rectilinear line. In contrast, our BECs are
not dilute, i.e., they are well within the Thomas-Fermi
limit, and we consider an axially symmetric nonrotating
trap with slowly precessing solitonic-vortices.

B. Extraction Procedure

In our experiments we implement forced evaporation
to produce sodium BECs of around 2 × 107 atoms in
the same cigar-shaped traps as used for our numerics,
i.e., with ω⊥ = 10ωx and ω⊥/2π = 92 Hz. A detailed
description of our experimental procedure can be found
in Refs. [61, 62] while here we highlight the relevant
points. The speed of the temperature quench is con-
trolled such that a given condensate typically inherits
one, or a few, solitonic vortices via the Kibble-Zurek
mechanism [40, 41, 44–48]. For the purpose of investi-
gating vortex dynamics in real time we utilize an imag-
ing scheme, also presented in Ref. [61], that periodi-
cally probes the condensate in a minimally invasive man-
ner [45, 63]. A small fraction ≈ 1% is extracted ev-
ery 12 ms and after expansion this is imaged, leaving
the trapped condensate otherwise intact. The extrac-
tion is performed by transferring atoms from the trapped
|F = 1,mF = −1〉 state to the untrapped |1, 0〉 state us-
ing a radio frequency field. Since only one component
feels the magnetic trap, the energy difference (and hence
the resonance condition) between the two states is po-
sition dependent and enables us to selectively address
different spatial regions of the condensate. The gravita-
tional sag, of 30 µm in the z direction, is larger than the
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condensate radius and this allows us to linearly sweep
the radio frequency field to produce a single resonance
front that travels from top to bottom. This sweep of
the extraction front has the effect of compressing the ex-
tracted portion in the vertical direction and enhancing
self-interference effects, which aids with the gathering of
in situ information about the position and orientation
of the solitonic vortices. As the extracted fraction ex-
pands it also falls under gravity while interacting signifi-
cantly with the trapped condensate for about 3 ms, after
which they become spatially separated. Finally, follow-
ing a 13ms time of flight (TOF), the extracted portion is
imaged.

To better understand how the expansion images from
the above procedure relate to the in situ positions and
orientations of the vortices, we perform full numerical
simulations using the time-dependent GPE [Eq. (8)]. The
interactions between trapped atoms, and between un-
trapped and trapped atoms, are of the same strength and
are characterized by the scattering length 54.54(20) a0;
the subdominant interactions between extracted atoms
have a scattering length of 52.66(40) a0 [53]. On the
one hand, the expansion dynamics is relatively fast and
this allows us to treat the in-trap vortex positions as
fixed during the extraction sweep. On the other hand,
the global phase of the trapped condensate continues to
evolve and it turns out to be crucial to account for this
during the extraction.

As was the case in Sec. II B, the in-trap part of this
simulation treats N = 8 × 105 sodium atoms in a har-
monic trap with the same confinement parameters as for
the experiment. The discrepancy of atom number be-
tween theory and experiment corresponds to a chemi-
cal potential difference of a factor of three and, hence,
Thomas-Fermi radii that differ by a factor of

√
3. It is

not feasible for us to simulate the full experimental atom
number since, as a reference, producing the results in
this paper already consumed around four weeks of com-
puter time on 100 cores. However, due to the findings
in Ref. [61] and the comparisons between theory and ex-
periment in this paper, we expect this discrepancy not
to be of qualitative importance. To account for the dif-
ferent Thomas-Fermi radii between theory and experi-
ment, when optimizing the vertical compression of the
extracted portion, the numerical extraction sweep is 12
kHz/ms, while it is 10 kHz/ms for the experiment. The
numerical results that follow assume a 10 ms TOF before
imaging the extracted fraction (cf. 13 ms for the exper-
iment); we have numerically checked that this results in
only minor differences. While the creation of our ini-
tial states is described in Sec. II B, during the course of
the expansion we interpolate and enlarge the grid such
that the one used for the final part of the expansion has
size {Lx, Ly, Lz} = {229,139,109}µm and {Nx, Ny, Nz}
= {600,240,500} points, respectively. We have checked
that all results presented here are numerically converged
to ∼1% or better.

C. Extraction Results: Experiments and Numerics

Numerical simulations relating the in situ vortex ori-
entations to the corresponding expanded extractions are
shown in Fig. 5 for a vertical (left) and a horizontal
(right) vortex. The compression in the vertical (z) direc-
tion, evident in Figs. 5 (c)(d), is remarkable given that
this direction would normally see the greatest expansion
if the extraction had instead been uniform (not swept).
By considering a top-down view, i.e., the x-y plane in
Figs. 5 (e)(f), the extracted fraction is seen to be framed
by a high density elliptical border that in turn surrounds
an ellipse of low density. This effect is due to the inter-
actions with the trapped condensate, and exists even in
the absence of any vortex.

Importantly, though, by contrasting the 2D extracted
fractions for the two different vortex orientations, addi-
tional regions of constructive and destructive interference
are apparent. The physical processes involved in the cre-
ation of these vortex-induced asymmetries are compli-
cated but two important contributions are as follows. (i)
The vortical superfluid velocity is greatest when forced
to flow near a boundary and, after expansion, such a re-
gion of enhanced velocity tends to leave behind a hole
and an adjacent bump [37, 38]. This mechanism is im-
portant for, e.g., a vertical vortex as can be seen in Fig. 5
(e) where two high-density bumps are positioned diago-
nally about the core. (ii) During an extraction sweep,
the atoms that are released early experience a drop in
potential since they no longer feel the trap. The result
is that the wavefunction phase evolves faster for those
atoms that remain trapped, and the eventual interference
between the atoms released early and those released late
causes destructive or constructive interference depending
on the in situ phase pattern about the core. This process
was important for the expanded horizontal vortex, seen
in Figs. 5 (d)(f), where constructive interference can be
seen on the −x side, but not the +x side.

Since each experiment periodically images a given con-
densate, it is useful to process the extraction images
to determine parameters that keep track of the in situ
vortices. The first step is to integrate either column-
density over the remaining radial direction to obtain
the 1D density, n1D(x) =

∫ ∫
|ψ(x)|2dydz, as plotted

in Figs. 5 (g)(h). A 1D residual density, nres(x) =
n1D(x) − fpoly(x), is then obtained by subtracting a
fourth-order polynomial fit fpoly(x). The residual is sub-
sequently fitted by the function,

ffit(x) =
A cos[B(x− xν) + δ]

cosh2[(x− xν)/C]
, (12)

for fit parameters A < 0, B, δ, C, xν . It follows, then,
that xν provides a measure of the vortex position along
the long axis while the phase δ furnishes a means of track-
ing its orientation. For the cases considered in Fig. 5 we
find that for the vertical vortex, {δ, xν} = {0, 0}, while
for the horizontal vortex, {δ, xν} = {−1.35,−3.5µm}.
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Figure 5. Simulation of expansion and image processing for a vertical (left) and a horizontal vortex (right). The directions of
superfluid flow are indicated by the semicircle arrows. (a)(b): In situ density isosurfaces at half of the peak density. (c)-(f):
2D column densities of the extracted portions in the x − z′ and x − y planes after a 10ms TOF. Note that z′ = z + z0, for
constant z0, is used to account for the displacement due to gravity, which acts in the −z direction. (g)(h): The integrated
1D densities n1D(x) =

∫ ∫
|ψ(x)|2dydz are plotted, along with their polynomial fits fpoly, the residual nres = n1D − fpoly and

the fit to the residual ffit [Eq. (12)]. For the vertical vortex on the left, fitting Eq. (12) gives {δ, xν} = {0, 0}, while for the
horizontal vortex on the right {δ, xν} = {−1.35,−3.5µm}. For the in-trap part of the simulation, the parameters are the same
as in Fig. 2; details of the expansion are provided in the text.

Note that for the latter case, the value of xν slightly mis-
represents the position of the vortex, which lies in the
x = 0 plane. Since a horizontal vortex that is oriented
in the -y direction has a phase δ = −1.35 then, by sym-
metry, a horizontal vortex of opposite sense must have
δ = +1.35. An important point is that although this fit-
ting procedure can ascertain that a vortex is vertical, it
cannot determine its sense. However, Fig. 5 (e) demon-
strates that the sense of a vertical vortex can easily be
attained from top-down images in the x-y plane if one
notes the locations of the diagonal high-density bumps
about the core. Furthermore, our simulations (not shown
here) illustrate that adding a real-time imaging capabil-
ity along the vertical direction, which was not feasible in
the present experiments, would clearly reveal the y posi-
tion of off-center vertical vortex cores (see Fig. 5 (e) for
comparison).

A numerical calculation of the 1D residual nres(x), as

a function of time, is presented for a precessing vortex in
Fig. 6 (a1). The central (red) color represents a negative
value while the outer (green) color is positive. The initial
state for this simulation, highlighted as the thick red line
in Fig. 4 (a), is evolved according to the time-dependent
GPE [Eq. 8]. As the vortex precesses, the wavefunc-
tion is periodically saved and each of these is then used
to initiate an extraction simulation to produce a single
time slice of Fig. 6 (a). This particular vortex has a tilt
of θ = 0.22 radians and a precession frequency Ω/2π =
5.5 Hz, as can be seen from Fig. 3. The fitted phase δ
[see Eq. (12)], shown in Fig. 6 (a2), is a smoothly vary-
ing function of time that maps to the in situ orientation
of the precessing vortex.

We present experimental evidence for a precessing soli-
tonic vortex in Fig. 6 (b). This has a precession frequency
of ≈ 5 Hz, which is very similar to that of our numeri-
cal simulation in Fig. 6 (a). Since the experiment has a
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Figure 6. (a1)-(d1) Doubly integrated 1D residual densities
nres(x) after a partial extraction and expansion and (a2-d2)
the corresponding phase of their fits δ (2), as a function of
time. The central (red) color is negative while the outer
(green) color is positive. (a) Numerical extractions from an
in-trap simulation that used the initial state marked by the
thick red line in Fig. 4 (a), having a precession frequency of
Ω/2π = 5.5 Hz. (b)-(d) A selection of experimental runs. The
parameters are described in Sec. III B.

chemical potential ≈ 3 times larger than in our simula-
tions, the scaling of our analytic model, Eq. (7), suggests
that the tilt angle be ≈ 2 times larger for this experiment,
i.e. θ ∼ 0.4 radians. As was the case for the simulation,
in Fig. 6 (b2) the residual’s phase displays an oscillatory
behavior. However, a difference here is that δ now has
an asymmetry, with some saturation near −π/2. A pos-
sible explanation for this bias is a slight tilt (∼ 1 degree)
of the imaging camera, which looks down the y axis, ef-
fectively rotating the x-z plane relative to the direction
of gravity. To help visualize this, consider the simula-
tion in Fig. 5 (d), where the density minimum of the
vortex core exhibits a tilted, relatively narrow canyon in
the vertical direction. The sensitivity to a camera tilt is
expected to be even more pronounced in the regime of
the experiment, for which the healing length is smaller,
the Thomas-Fermi radii are larger and the TOF is longer.
Two further experimental examples of precessing vortices
are presented in Figs. 6 (c) and (d). In addition to the
precession evidenced by the changing order of colors (and
the corresponding oscillations of δ), these vortices orbit
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Figure 7. (a) Numerically determined residual phase δ after
a 10 ms partial expansion as a function of in situ vortex ori-
entation. Solid curves are for untilted (strictly in the x = 0
plane) vortices while the ‘+’ symbols are for the tilted pre-
cessing vortex already shown in Fig. 6 (a). The middle curve
is for a vortex that runs through the origin while the oth-
ers are for off-center vortices. The three dashed lines mark
when the untilted vortices are oriented along the vertical (-z),
horizontal (+y) and vertical (+z) direction, and these corre-
spond to the examples in the lower panels that illustrate the
positions of the off-center vortices. (b)-(d) Cuts through the
x = 0 plane illustrating the positions of the vortex cores in
the main plot. Density isocontours are at 10%, 50% and 90%
of the peak density. The arrows indicate the sense of vorticity.
Note that the curves in the upper and lower subplots have a
matching color code to guide the eye.

about the BEC’s origin, manifested here as oscillations
of their x coordinate, as they follow contours of constant
Thomas-Fermi density [12]. We note that it is not possi-
ble to directly obtain a vortex’s axial tilt from our TOF
images, due to complications from the interactions be-
tween the extracted portion and the trapped condensate,
as well as interference effects within the extracted por-
tion, thus prohibiting a quantitative comparison with our
theoretical prediction (7) for the precession frequency as
a function of the tilt angle.

An intriguing question is how the relationship between
the residual and vortex orientation is modified for off-
center vortices, i.e., those that do not pass through the
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x axis. The residual phase versus the in situ orientation
angle is plotted for various off-center vortices in Fig. 7
(a). These untilted vortices, which lie in the x = 0 plane,
are represented as solid lines that vary in color from black
to light blue (gray). To aid with their visualization, the
positions of these vortex cores are plotted for three an-
gles (the three vertical dashed lines in the main plot) in
Figs. 7 (b)(c)(d), with a matching color code. In the
main plot, the stationary-state vortex (the straight line
in the lower panels) has a δ that is symmetric about zero,
as expected. For comparisson, we collapse the precess-
ing vortex data from Fig. 6 (a2) onto the main plot of
Fig. 7, and mark these with plus symbols. The behavior
is fairly similar to that of the stationary-state vortex, in-
dicating that the axial tilt (θ > 0) itself does not have a
significant effect on the residual. The behavior changes
radically, however, if a vortex is off-center. In particular,
the values of δ become asymmetric and tend to become,
either more negative or positive depending on the sense
of the vortex relative to its closest boundary. For the
most-off-center vortices, take the one indicated by the
black line for example, changing the orientation angle
has little effect on δ. Consequently, as a vortex becomes
more off-center, δ is no longer a useful indictor of a vor-
tex’s orientation, but instead conveys the sense of the
vortex relative to its closest boundary. As a final note,
we can deduce that this off-center-vortex effect is not re-
sponsible for the δ < 0 asymmetry in Fig. 6 (b2). This is
because such an off-center vortex would also orbit about
the condensate center [12], which would be evident as
large oscillations of the vortex position along the x axis,
contrary to observations in Fig. 6 (b1).

IV. CONCLUSIONS

Solitonic vortices are highly-localized objects, both in
terms of their energy and angular momentum densities,
in stark contrast to vortices of untrapped systems. With

this as motivation, we developed a theoretical model that
treats solitonic vortices on a similar footing to classical
spinning tops. Using our minimally destructive imaging
scheme we experimentally observed this spinning-top be-
havior by periodically imaging a given condensate in real
time. We performed 3D Gross-Pitaevskii simulations to
investigate how the precession frequency varies as a func-
tion of the axial tilt angle, and comparisons of these with
our analytic prediction further supported our spinning-
top model, while also quantifying its limitations. Finally,
we carried out Gross-Pitaevskii simulations of our exper-
imental extraction and imaging scheme. From these we
suggested improvements, such as the addition of real-
time imaging capability along the vertical (z) direction
to keep track of the sense and radial position of vortices
when they are vertical. Our simulations also demon-
strated how to interpret expansion images when vortices
are off-center, i.e. when they do not pass through the x
axis.

An interesting question arises regarding the role of a
trap asymmetry in the radial plane or, in other words,
the squashing of the cigar-shaped trap along one of its
short directions. For small radial asymmetries the vortex
is still expected to precess about the trap’s long axis,
albeit with a small periodic change of the tilt angle to
preserve its length and hence conserve its energy. On the
other hand, vortex dynamics for a highly squashed cigar
becomes dominated by the tight direction, a situation
for which a tilted vortex exhibits a precession about this
new axis [64]. The nature of the transition between these
two orthogonal precession axes, as a function of the
radial asymmetry, presents an intriguing consideration
for future research.
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