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Metrological features of the Large Piston Prover at INRIM  

Abstract 

INRIM realizes its flow rate standard using three distinct facilities, aimed at measuring different flow rate ranges; in 

particular, for the largest flow range rate (10-2600 L/min) a piston prover is used. This machine is of the volumetric 

type, therefore its traceability can be obtained through dimensional calibration of the piston, which has a nominal 

diameter of 1000 mm and a nominal stroke of 1200 mm.  

The present paper describes in detail the features of the standard, its traceability chain and the uncertainty budget of 

the measurements it can perform. The uncertainty budget directly determines the Calibration and Measurement 

Capabilities claim in the range available to the test rig. A detailed analysis of the various uncertainty components will 

be presented and discussed. Special attention will be dedicated to the dimensional calibration of the piston, since it is 

of paramount importance for the determination of the main uncertainty component. This calibration is particularly 

challenging since, due to the large size of the piston, it must be carried on in-situ, thereby requiring a set of special 

adaptations with respect to a standard calibration of a cylinder. It will be shown that the calibration of the piston 

recently performed is in good accordance with the one that was carried out at the piston initial installation in 1999, 

thus confirming the stability of the standard. 

Keywords 

primary flow standard; volumetric calibration; uncertainty analysis; test rig development; flow calibration 

1. Introduction 

Accurate measurement of gas flow rate is a field whose importance is well established due to the wide range of 

application where such quantity is of paramount importance (e.g. fuel gas exchange, process gas measurement in 

applications connected to medical/chemical industry, etc.); presently, there is a growing need for accurate calibration 

of mass flow meters with various Full Scale Range (FSR), that have an increasingly wide field of application (e.g. for 

dynamical gas mixing, aerospace applications, etc.). The flow rates of interest range from fractions of cubic 

millimeters per second to several hundreds of liters per second. For such a range of flow rates, a robust and reliable 

measurement technology is the piston prover volumetric method, since it provides a carefully controlled flow of gas; 

its accurate measurement requires a reliable and precise knowledge of the relationship between delivered volume and 
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piston movement, the possibility to precisely measure the gas temperature and pressure, and the possibility of using 

high purity gases for the tests. INRIM operates two piston provers (in addition to a bell prover) to realize the Italian 

National Standard of gas flow rate. Specifically, one of the pistons is dedicated to extremely low flow rates (from 

≈ 0.1 Cubic Centimeters per minute - CCM to ≈ 1.2 Liters per minute) and will not be 

discussed here. The piston which is the subject of the present paper is the bigger one, called MeGas, which generates 

flows ranging from ≈ 1 Liter per minute to ≈ 2500 Liters per minute, although the higher flow rate 

is usually self-limited to about 1000 Liters per minute. INRIM has operated the MeGas piston prover for several years 

now [1]; its features include a very accurate piston machining, reduced movement friction, accurate measurement of 

the piston movement and of the gas thermodynamic conditions, and temperature stabilization of the environment. 

Although all of these features are of great importance and allow the improvement of the measurement accuracy, the 

main requirement for obtaining high precision measurement is still an accurate calibration of the volume of the piston. 

In this paper a full uncertainty budget of the test rig and the methods for determining the various uncertainty 

contributions will be described in detail, alongside with some considerations on the implications of such a budget for 

the future developments of the machine.  

The piston prover concept has been used for a long time now; One of the first well-documented developments of a 

piston prover for use as a primary standard can be found in [2], where the adaptation of a piston prover built for liquid 

measurements to gas measurements is described. Since then, several variants and adaptations have been developed for 

various applications. A recent review of piston provers used as primary standards can be found in [3], alongside with 

a description of their theory of operation. In [4] a large, hydraulically-driven piston prover is described, including a 

discussion on the dimensional analysis of the piston itself. [5] discuss the double-piston concept, which has the 

advantage of allowing measurements during both runs of the piston, but at the price of an increase in complexity. 

In order to provide a reference frame for the present work, the metrological properties of a few test rigs developed in 

other NMIs, taken from the BIPM KCDB, are presented in the following Table 1: 

 

 

 

 

 



 

NMI Standard type 
Range  

/m3/h 

Uncertainty  

/ % 

INRIM 
Piston (standard 

described here) 

1-150 0.05 

INRIM Bell 0.06-6 0.12 

VSL Bell 1-400 0.09 

VSL Piston (see also [4]) 5-230 0.06 to 0.29 

CMI Bell 0.5-280 0.07 

Table 1. Metrological properties of some gas flow primary standard. 

 

     This is the third INRIM work ([6], [7]) in a series of papers that aim to disseminate the knowledge of flow 

measurement standards focusing on a metrological point of view. Authors think that the hypotheses and the theories 

underlying the uncertainty budget of a standard are fundamental for the correct evaluation of its uncertainties, but 

often the details of this analysis are reported in languages other than English or in laboratory procedures and technical 

reports which are not open access. The theoretical work of uncertainty analysis must always precede the results of 

international comparisons which must be limited to support the validity of detailed uncertainty evaluations. It is the 

authors' opinion that sharing and comparing also the theoretical evaluation of the uncertainty and not only the 

numerical results is important. This paper has been divided in sections in order to facilitate its reading and make the 

analysis even clearer and therefore usable by those who do not yet have solid experience in the field of primary 

standards. 

2. Facility and instrumentation description 

2.1. The Measurement ambient 

The MeGas facility is located at the gas flow laboratory in INRIM. The laboratory is temperature controlled and the 

temperature during calibration can be set in the range from 15 °C to 25 °C. Whenever the temperature setting is 

changed, at least 12 hours should be waited before taking measurements. Under normal conditions, the 

temperature is set to 20 °C. The relative humidity value is currently not controlled but is measured and recorded 

using a TESTO thermo-hygrometer data logger. The ambient pressure too is not controlled and it is determined, 



with small variations, by the external atmospheric pressure and is measured by a Ruska barometer. During a single 

measure of a calibration, the pressure changes must be contained within ±200 Pa. If this condition is not met, the 

calibration is considered invalid and repeated. 

 

2.2. The Piston Prover  

The MeGas test rig described in the present paper, is a single-stroke, plunger-type piston prover. It was designed and 

built at the then-IMGC (now INRIM) in the mid-1980s with the aim of developing the largest piston prover that could 

be housed in the existing laboratory premises. The goal of the development was the reduction of one order of 

magnitude of the “purely volumetric” uncertainty components that affect bell provers. This was obtained by 

eliminating the oil bath and by adopting a rigid, precisely machined and measured body to sweep the volume, which 

naturally leads to the piston prover concept. The plunger type (namely a long, vertical cylindrical piston forced to sink 

through a gasket into a slightly larger, rigid but mechanically unfinished chamber containing the gas) was preferred 

over a traditional piston-cylinder system because of metrological (the external diameter can be measured more 

accurately than the internal one) and practical reasons (it is easier and cheaper to machine the piston than the cylinder, 

and the gasket is more easily accessible).  

The resulting device is a structure 6 m high (Fig. 1), with at its top a platform (Fig. 1A) where a finely controlled 

brushless motor drives, through a gearbox, the female ball-screw of a lead screw (Fig. 1B) connected with the piston. 

This apparatus causes the vertical movement of the piston (Fig. 1C) and the emission of pulses from a rotating encoder 

(Fig. 1A) fitted on the female screw. The piston is constituted by a 1000 mm nominal diameter, 1630 mm long and 14 

mm thick carbon-steel cylinder fitted to a massive bottom flange. The external surface of the cylinder is chromium 

plated, ground and polished. The leak-proof gasket at the top of the chamber is a Teflon-coated, 1000 mm diameter 

O-ring compressed to the necessary and adjustable extent by an upper flange. The internal diameter of the 

measurement chamber (Fig. 1D) is 1095 mm; in the clearance between its walls and the piston, 10 Platinum Resistance 

Temperatures (PRTs) are installed at different heights and positions in order to measure the average gas temperature 

and to detect possible non uniformities. The chamber rests on the 1950 mm diameter base of the prover.  A bended 

pipe is connected to a 100 mm bore at the center of the base which conveys the gas displaced by the piston towards 

the test line. A group of automatically operated valves (a safety valve, one for admission of atmospheric air and one 



for gas delivery to the test line) are installed at the facility exit (Fig. 1E) . The internal volume of the prover is about 

1500 L when the piston is at its upper rest position; the volume of the piston is more than 1200 L, however, considering 

the parts of the piston stroke that must be devoted to acceleration, deceleration and the emergency stop switches 

installed at both ends, the largest gas volume that can be displaced and measured is about 800 L. 

2.2.1 Mode of Operation  

The operation of the prover is fully automated and controlled by a specific electronic apparatus, which controls the 

movement according to the required mode. The instrumentation – namely the encoder, the chronometer, the various 

transducers measuring piston velocity, displaced volume, temperatures and pressure - is interfaced to a PC for 

recording of the data. 

The mode of operation of the piston is as follows. The piston is placed at its initial position (top or bottom depending 

whether supply or admission mode is required). A period of one minute is allowed for temperature stabilization, then 

the piston is moved at the programmed speed. After velocity and pressure stabilize, the measurement phase begins, 

i.e. the initial measurement conditions (position of the piston yi and thermodynamic conditions pi, Ti) are recorded, 

while the chronometer is started. Once the required displacement has been performed, the final measurement 

conditions (position of the piston yf and thermodynamic conditions pf, Tf) are recorded and the chronometer is stopped, 

providing the test time Δt; the piston is then brought to rest. The difference Δy = yf -yi between the initial and final 

positions of the piston is the measured displacement of the piston and, when multiplied by the piston base area (which 

is considered as a constant, see Sec. 4), allows the computation of the displaced volume of gas ΔV. The initial and 

final thermodynamics conditions allow to compute the initial and final gas densities, which are used to determine the 

reference volume and, together with the elapsed time, the reference flow rate provided by the piston, as described in 

detail in Sec. 3. Depending on the working mode, supply or admission, the sign of Δy will be different; this will lead 

to slightly different corrections in the determination of the final values, as described in Sec. 3. It is important to notice 

that measurements are taken after the stabilization of the piston movement and of the pressure, i.e. in stationary 

conditions. No unsteady effects are therefore taken into account. 



 

Fig. 1. MeGas Facility, A: MeGas encoder and piston control, B: screw, C: Piston, D: measurement chamber, 

E: facility exit 

2.3. The measurement system 

The traceability of the measurements carried out in the gas flow laboratory is guaranteed by the metrological chain 

detailed in the following traceability diagram (Fig. 2). 

The traceability of the piston displacement and of the piston base area are obtained by means of the geometrical 

calibration of MeGas.  

The traceability of the thermometric chain, the barometer and the hygrometer is guaranteed by calibration to the 

respective primary standards at INRIM.  

Traceability of the chronometer is to the Italian National Time, as described in detail in Sec. 4.3.4. 



Since this section focuses on the measurement system of the MeGas, it is important to specify that the measurement 

chain of MeGas during its functioning as primary standard (Sec. 2.2) does not correspond to the measurement chain 

used for the MeGas geometrical calibration (Sec. 4.1).    

The measurement chain of the geometrical calibration of MeGas is shown in Fig. 5. During the MeGas geometrical 

calibration, the displacement was evaluated by an interferometric system, traceable to the INRIM primary length 

standard whereas the piston base area was evaluated by a couple of linear encoders that measured the diameter of the 

piston at different heights. The two linear encoders are traceable to the primary standard of length by calibration at 

INRIM. 

A special, stainless steel bar traceable to the LNE primary length standard was used as reference for the linear encoders 

during the MeGas calibration. 

The geometrical calibration of the MeGas was described in detail by three previous works [8], [9], [11].  In Sec. 4 a 

brief description of the geometrical calibration procedure of the MeGas is summarized in order to provide the reader 

with the basic elements to better understand the uncertainty analysis and the uncertainty budget. 

 

 

Fig. 2. Traceability diagram of MeGas. The instruments framed in red (first level line) added to the instruments 

framed in green (second level line) constitute the measurement chain for the MeGas calibration procedure. The 

instruments framed in green also constitute the in-use measurement chain of the test rig. 

 



3. Model equation for the flow standard at MeGas  

The computation of the reference volume and of the flow rate provided by the piston is done using the so-called 

method of the balance of mass, i.e. by evaluating the mass of gas delivered (or accepted) by the prover during the test. 

It was chosen to use this method instead of the simple determination of the volume since it allows to keep directly in 

consideration the variations in thermodynamic conditions for the computation of the quantity of gas that has flown 

through the test rig bore; additionally, the result is invariant with the thermodynamic conditions, and can therefore be 

readily converted to any desired form (e.g. molar flow, volume flow of gas at reference condition etc.); finally, the 

method takes directly into account the effects of compression of the dead volume, which are anyway very small due 

to the small overpressures within the cylinder. In Sec. 4.3.3 and 5, it will also be shown that the uncertainty associated 

with the measurement can be controlled with relative ease by the application of this method. The drawback of the 

method is that it requires measuring the initial and final thermodynamic conditions of the gas; such measurements are 

described in detail in Sec. 4.3.1 and 4.3.2. The displaced mass of gas ΔM is then computed as the difference between 

the final mass (obtained by multiplying the final density times the final volume estimate) and the initial mass (obtained 

by multiplying the initial density by the initial volume estimate); this difference can be rewritten as the final density 

by multiplying the displaced volume ΔV, computed as described in Sec. 2.2.1, with the final density and by adding a 

correction term which depends on the density variation and on the initial volume: 

∆𝑀 =  𝜌2𝑉2 − 𝜌1𝑉1 =  𝜌2∆𝑉 +  𝑉1 (𝜌2 − 𝜌1)                               (1) 

This formulation of the equation shows that the uncertainty contribution of the initial volume is minimal (since it 

multiplies a value that is very small if the variation of thermodynamic conditions is small) and therefore even large 

uncertainties on the initial volume will affect only slightly the final result; in other words, it is not necessary to estimate 

the dead volume to a great accuracy, which is often difficult. ΔM can then be converted to the reference volume ΔVRef  

of gas – not to be confused with the displaced volume ΔV - at the specified reference conditions (which can be defined 

to a standard value, e.g. 0° C and 1 atm, or be the conditions at the Device Under Test - DUT) for comparison to the 

DUT output as follows: 

∆𝑉𝑅𝑒𝑓 =  
𝜌2𝑉2−𝜌1𝑉1

𝑀𝑚𝑜𝑙
∙

𝑅𝑇𝑟𝑒𝑓

𝑝𝑟𝑒𝑓
=  

𝜌2∆𝑉+ 𝑉1 (𝜌2−𝜌1)

𝑀𝑚𝑜𝑙
∙

𝑅𝑇𝑟𝑒𝑓

𝑝𝑟𝑒𝑓
                        (2) 



where R is the universal gas constant, Mmol is the molar mass of the test gas, Tref and pref are the thermodynamics 

conditions to be used for the conversion. 

It should be noted that in writing Eq. 1 it is assumed that the final volume is larger than the initial one (admission 

mode) in order to have a positive value of the mass variation and therefore of the reference volume. The corresponding 

equation for supply mode is slightly different in that signs are opposite; this leads to small changes in the final 

formulation used for the computations, but the analysis of this second formulation can be performed in the same way 

leading to similar results (not presented here for conciseness). 

The flow rate, in mass (QM) or volume (QV), is computed by dividing the computed mass or volume by test time 

measured by the chronometer: 

𝑄𝑀 =  
𝜌2𝑉2−𝜌1𝑉1

∆𝑡
=  

𝜌2∆𝑉+ 𝑉1 (𝜌2−𝜌1)

∆𝑡
                                          (3a) 

𝑄𝑉 =  
𝜌2𝑉2−𝜌1𝑉1

𝑡∙𝑀𝑚𝑜𝑙
∙

𝑅𝑇𝑟𝑒𝑓

𝑝𝑟𝑒𝑓
=  

𝜌2∆𝑉+ 𝑉1 (𝜌2−𝜌1)

𝑡∙𝑀𝑚𝑜𝑙
∙

𝑅𝑇𝑟𝑒𝑓

𝑝𝑟𝑒𝑓
                                  (3b) 

Eq. 3a and Eq. 3b represent the formulation of the model equations for the computation of the flow rate delivered or 

accepted by the prover, while Eq. 2 is the formulation for the computation of the reference volume delivered or 

accepted by the prover. In the following the uncertainty analysis will be performed starting from Eq. 3b, since the 

corresponding analysis for Eq. 2 and Eq. 3a can readily be obtained by elimination of some terms. 

4. Uncertainty analysis 

The uncertainty analysis will be performed according to the document JCGM 100:2008 [10] based on Eq. 3b. The 

latter can be rewritten as:  

𝑄𝑉 =  
∆𝑀

𝑡∙𝑀𝑚𝑜𝑙
∙

𝑅𝑇𝑟𝑒𝑓

𝑝𝑟𝑒𝑓
                                                                                       (4) 

Eq. 4 is a multiplicative model, therefore the uncertainty associated to it can readily be obtained as: 

 
𝑢2(𝑄𝑉)

𝑄𝑉
2 =

𝑢2(∆𝑀)

∆𝑀2 + 
𝑢2(𝑡)

𝑡2  +
𝑢2(𝑀𝑚𝑜𝑙)

𝑀𝑚𝑜𝑙
2  +  

𝑢2(𝑅)

𝑅2     +
𝑢2(𝑇𝑟𝑒𝑓)

𝑇𝑟𝑒𝑓
2 +

𝑢2(𝑝𝑟𝑒𝑓)

𝑝𝑟𝑒𝑓
2                                         (5)        



The last five terms in this equation can be obtained directly as will be shown in Sec. 4.2; though, a more detailed 

analysis is required for the first term. In order to perform such analysis, consider again Eq. 1 in its second form. The 

following sensitivity coefficients can be computed:  

𝜕∆𝑀

𝜕𝜌2
=  ∆𝑉 + 𝑉1;   

𝜕∆𝑀

𝜕𝜌1
= − 𝑉1;  

𝜕∆𝑀

𝜕∆𝑉
=  𝜌2 ;    

𝜕∆𝑀

𝜕𝑉1
=  𝜌2 − 𝜌1   

Since in Eq. 1 the quantities 𝜌1 and 𝜌2 are correlated, it is also necessary to consider the covariance term:  

𝐶𝑜𝑣(𝜌1, 𝜌2) = 𝜌0
2 ∙ [

𝑢2(𝑝0)

𝑝0
2 +

𝑢2(𝑇0)

𝑇0
2 ]                                                (6) 

Where the subscript 0 indicates the average between the corresponding initial and final quantities, under the hypothesis 

that variations of the thermodynamic conditions are small. 

Eq. (6) was obtained by replacing the density with its expression as a function of p and T, and developing the relevant 

equations for covariance, by considering small variations between initial and final conditions. The sensitivity 

coefficient for the covariance term is: 

𝜕∆𝑀

𝜕𝜌1
∙

𝜕∆𝑀

𝜕𝜌2
=  −𝑉1 ∙ (∆𝑉 +  𝑉1)                                                         (7) 

It is then possible to express the absolute standard uncertainty associated to the variation of mass within the prover as 

follows:  

𝑢2(∆𝑀) = (∆𝑉 +  𝑉1)2  ∙ 𝑢2(𝜌2) + (𝜌2)2  ∙ 𝑢2(∆𝑉) + (𝜌2 − 𝜌1)2  ∙ 𝑢2(𝑉1) + (𝑉1)2  ∙ 𝑢2(𝜌1) − 2 ∙ 𝑉1 ∙ (∆𝑉 + 𝑉1) ∙ 𝜌0
2 ∙ [

𝑢2(𝑝0)

𝑝0
2 +

𝑢2(𝑇0)

𝑇0
2 ]         (8) 

Uncertainties associated to the densities are expressed according to their dependency on the thermodynamic 

conditions. After developments and simplifications, one obtains:  

𝑢2(∆𝑀) = ∆𝑉2  ∙ 𝜌0
2 ∙ [

𝑢2(𝑝0)

𝑝0
2 +

𝑢2(𝑇0)

𝑇0
2 ] + 𝜌0

2  ∙ 𝑢2(∆𝑉) + (𝜌2 − 𝜌1)2  ∙ 𝑢2(𝑉1)                                                          (9) 

and, in relative form: 

𝑢2(∆𝑀)

∆𝑀2 = [
𝑢2(𝑝0)

𝑝0
2 +

𝑢2(𝑇0)

𝑇0
2 ] +

𝑢2(∆𝑉)

∆𝑉2 +
(𝜌2−𝜌1)2

𝜌0
2 ∙

𝑉1
2

∆𝑉2 ∙  
𝑢2(𝑉1)

𝑉1
2           (10)                        



which can be replaced in equation (5) to give: 

𝑢2(𝑄𝑉)

𝑄𝑉
2 = [

𝑢2(𝑝0)

𝑝0
2 +

𝑢2(𝑇0)

𝑇0
2 ] +

𝑢2(∆𝑉)

∆𝑉2 +
(𝜌2−𝜌1)2

𝜌0
2 ∙  

𝑉1
2

∆𝑉2 ∙  
𝑢2(𝑉1)

𝑉1
2 + 

𝑢2(𝑡)

𝑡2  +
𝑢2(𝑀𝑚𝑜𝑙)

𝑀𝑚𝑜𝑙
2  +  

𝑢2(𝑅)

𝑅2 +
𝑢2(𝑇𝑟𝑒𝑓)

𝑇𝑟𝑒𝑓
2 +

𝑢2(𝑝𝑟𝑒𝑓)

𝑝𝑟𝑒𝑓
2                  

(11) 

Since the present paper focuses on the geometrical calibration of the piston, the uncertainty sources associated to this 

calibration (diameter and displacement) are discussed separately in Sec. 4.1, while sources associated to the 

measurement system, to the measurement technique and to the environment (instruments, ambient conditions, etc.) 

are discussed in Sec. 4.3. 

 

4.1 Geometrical calibration of MeGas   

The geometrical calibration of MeGas consists in the evaluation of the mean diameter of the piston and of the piston 

displacement (by calibrating the MeGas encoder on site) in order to make the piston diameter and displacement 

traceable to the primary standard of length.  

The piston diameter has been evaluated by means of two linear encoders along seven generatrices of the cylindrical 

piston (see Fig. 3 and Fig. 4). The piston displacement has been evaluated by calibration of the encoder with an 

interferometer; the interferometer was placed below the MeGas base, the laser ray passing through the bore in the base 

providing the facility in- and outflow (see Fig. 5 and Fig. 6). 

The diameter and the displacement measurement chains are acquired simultaneously according the following 

sequence: 

1. the linear encoders are positioned on the chosen generatrix and zeroed on the reference bar;   

2. the temperature inside the chamber, the pressure and humidity in the laboratory are recorded; 

3. outputs from the interferometer and the linear encoders are recorded during several vertical translations (up- 

and downwards) of the piston; each translation is 1.28 m long with a 1 mm step, providing thus 1280 diameter 

measurements on each run;  

4. the temperature inside the chamber, the pressure and humidity in the laboratory are recorded again; 

5. after (at least) 7 repetitions the linear encoders are zeroed again; steps (1) to (4) are then repeated for another 

generatrix.  

The piston diameter could thus be estimated as the average of 93 x 1280 diameter acquisitions. 

Great care has been taken to allow the structure to settle after the operator disturbed its temperature, by monitoring 

the reference bar temperature and that of the air inside the cylinder.  



Full details of the procedure and complete measurement results are reported in [8] and [10]. Operations necessary to 

prepare the MeGas facility are detailed in [9].  

 

Fig. 3. Top view sketch of the piston with the positions of generatrices;  

 

Fig. 4. (a) – Linear encoder zeroed on the reference bar (yellow frame); (b) - linear encoder during measure 

along one generatrix of the cylindrical piston. 

 



 

Fig. 5. Scheme of the measurement chain for MeGas, geometrical calibration 

 



 

 

Fig. 6. (a) - Red arrows indicate the laser path. 1: interferometer, 2, 3 and 4: folding mirrors; 5: beam splitter 

+ corner cube (visible in Fig. 6 (b)); 6: corner cube positioned on the piston inferior surface (not visible in 

figure); the total dead path length is of about 200 mm. (b) – 5: beam splitter + corner cube (realizing the 

reference arm) placed on the internal surface of the base of the chamber 

 

 

Fig. 7. Acquisition trigger block scheme.  

 



4.1.1 Piston diameter  

According to the measurement procedure applied, the diameter of a singular acquisition is evaluated as:  

𝑑𝑖,𝑗 = (𝛥𝐿𝑖,𝑗 − 𝛥𝐿𝑅𝐸𝐹,𝑗) + 𝐿𝑅𝐸𝐹                                    (12) 

with i=1…1280 and j=1…93, where ΔLi,j is the i-th acquisition of the j-th measure and  ΔLREF,j is the corresponding 

reference output obtained as the mean value of the  measurements results ( ΔLREF,1,j and ΔLREF,2,j  ) obtained at different 

times (see point 1 and point 5 in the action list of Sec. 4.1) . The value  of the reference bar is given by means of the 

reference bar calibration certificate The corresponding value in the most recent certificate by LNE is: 

𝐿𝑅𝐸𝐹 = (0.999252 ±  0.000005)  m                

(13) 

The mean diameter over the 1280 acquisitions for the j-th measure is: 

𝑑𝑗 = 𝛥𝐿𝑗 − 𝛥𝐿𝑅𝐸𝐹,𝑗 + 𝐿𝑅𝐸𝐹                                                      (14) 

Finally, the mean diameter of the piston over the 93 measures is computed as:  

𝑑 =
1

93
⋅ ∑93

𝑗=1 𝑑𝑗                                                                                (15) 

The uncertainty associated to the single acquisition of the diameter, corresponding to the uncertainty of the 

measurement chain (Type B uncertainty), can be computed as: 

𝑢(𝑑𝑖,𝑗) = √𝑢𝐶𝐸𝑅𝑇
2 (𝛥𝐿) + 𝑢𝑅𝐸𝑆

2 (𝛥𝐿) + 𝑢2(𝛥𝐿𝑅𝐸𝐹,𝑗) + 𝑢2(𝐿𝑅𝐸𝐹)                  (16) 

where the value uCERT(ΔL) is derived from the calibration certificate of the linear encoders, the value uRES(ΔL)  is 

associated to the linear encoders resolution, the value u(ΔLREF,j)  is associated to the encoder zeroing on the reference 

bar and finally the  standard uncertainty u(LREF)  is derived from the reference bar calibration certificate. 

Each linear encoder was calibrated in INRIM. The uncertainty associated with each linear encoder was assessed by 

assuming a rectangular distribution with a semi-amplitude equal to the maximum correction of the reading which has 

to be applied according to the certificate. The uncertainty associated with the certificate  uCERT(ΔL) is the sum of the 

uncertainties associated to each encoder and the uncertainty associated with corrections, giving: 

𝑢𝐶𝐸𝑅𝑇(𝛥𝐿) = 2.19 ⋅ 10−6  m. 

The uncertainty associated to linear encoder resolution has been estimated to be uRIS(ΔL) ≈ 3 ⋅ 10−8. 

The uncertainty associate to the zeroing of the linear encoder system on the reference bar is computed assuming a 

rectangular distribution over the two measured values for each j-th measure: 



𝑢(𝛥𝐿𝑅𝐸𝐹,𝑗) = √
(𝛥𝐿𝑅𝐸𝐹,1,𝑗−𝛥𝐿𝑅𝐸𝐹,2,𝑗)2

12
                                              (17) 

and its numerical value is found to be 1.5 𝜇𝑚 approximately. With the value of u(LREF) = 5 𝜇𝑚 as reported on the 

calibration certificate of the reference bar, the uncertainty associated to the mean diameter of the j-th measure is 

evaluated as:  

𝑢(𝑑𝑗) = √𝜎2(𝑑𝑗) + 𝑢2(𝑑𝑖,𝑗)                                                      (18) 

where 𝑢(𝑑𝑖,𝑗) = 5.7 ⋅ 10−6 𝒎  according to Eq. 16  and the value of  𝜎 (𝑑𝑗) varies from 2.0 ⋅ 10−6 𝒎 to 3.4 ⋅

10−6 𝒎 among all the 93 measurement  distributions.    

The standard deviation of mean diameter calculated from the 7 generatrices (see Table 2) is 𝜎 (𝑑 ) = 2 ⋅ 10−5 𝑚 

The mean diameter uncertainty is calculated, similarly to Eq. 18, as: 

 𝑢(𝑑) = √𝜎2 (𝑑 ) + 𝑢2(𝑑𝑖,𝑗)  =  2.1 · 10−5  𝑚                                                                                                                    

(19) 

The mean diameter in the working range was therefore evaluated to be equal to: 

𝑑 = 0.99950 ±  4.2 · 10−5 𝒎                               (20) 

In Fig. 8 and Fig. 9 the mean diameter for each generatrix and the overall mean diameter are shown.  

 

Fig. 8. Piston full travel: mean diameter for each generatrix (in color) and mean of the means (dashed black) 

as a function of piston displacement for the piston full travel. The continuous black line represents the mean 

over the piston full travel, with its standard deviation indicated by the colored area. 

 



 

Fig. 9. Piston working range: mean diameter for each generatrix (in color) and mean of the means (dashed 

black) as a function of piston displacement for the piston displacement limited to the working range The 

continuous black line represents the mean over the piston, with its standard deviation indicated by the 

colored area. 

 

The mean diameter for each generatrix is tabulated below; the mean diameter and its standard deviation are also 

shown. 

generatrix 𝑑𝑗 / m 

R 0.999496 

A 0.999498 

B 0.999533 

C 0.999504 

D 0.999489 

E 0.999469 

F 0.999486 

𝒅  = 0.99950 m and 𝜎 (𝒅 ) = 2· 𝟏𝟎−𝟓 

m 

Table 2. Mean diameter 𝑑𝑗 for each generatrix and mean diameter of the piston 𝒅  

 



4.1.2 Piston displacement 

In an interferometric measure, the displacement L of an object is obtained by multiplying the number of  fringes N by 

half the wavelength λ of the laser used. 

𝐿 = 𝑁 ⋅
𝜆

2
                                                                             (21) 

In order to obtain the actual displacement L of the piston a correction factor for the vacuum wavelength and for the 

refractive index has to be applied to the interferometer output Linterf.  The actual displacement L is therefore computed 

as:  

𝐿 = 𝐿𝑖𝑛𝑡𝑒𝑟𝑓 ⋅
𝜆0

𝜆0,𝑖𝑛𝑡𝑒𝑟𝑓
⋅

𝑛𝑖𝑛𝑡𝑒𝑟𝑓

𝑛
                                                       (22)                          

where 𝜆0 is the laser vacuum wavelength obtained from the calibration certificate, 𝜆0,𝑖𝑛𝑡𝑒𝑟𝑓 and ninterf are the vacuum 

wavelength and the refractive index used by the interferometer electronics for the computation of L interf , which is a 

function of 𝜆0,𝑖𝑛𝑡𝑒𝑟𝑓 and ninterf; the refractive index n is calculated using the Edlén formula as given in Appendix A-

IV of the Engineering Metrology Toolbox of NIST, Eq. A49 [12] and recalled in Eq. 23 for clearness, where T, p and 

RH are, respectively, the values of temperature, pressure and relative humidity during the measurement, obtained as 

the respective means of the initial (Tin,j, pin, j, RHin,j) and the final conditions (Tfin,j, pfin, j, RHfin,j) for every travel j=1…93 

of the piston.   

𝑛(𝜆0,𝑇, 𝑝, 𝑅𝐻) = 𝑛𝑡𝑝(𝜆0,𝑇, 𝑝) − 10−10 ⋅ 𝑝𝑉(𝑅𝐻, 𝑇) ⋅ 292.75 ⋅
3.7345−0.0401⋅𝑆(𝜆0)

𝑇+273.15
                                                  (23) 

Authors decided to not add further details in this work about the computation of the refractive index n because it is a 

too much specific dimensional metrology topic. However, all details on the computation of n can be found in [11], 

[12] and [13].  

According the Eq. 22, the displacement Li,j for a single acquisition can be calculated as:  

𝐿𝑖,𝑗 = 𝐿𝑖,𝑗,𝑖𝑛𝑡𝑒𝑟𝑓 ⋅
𝜆0

𝜆0,𝑖𝑛𝑡𝑒𝑟𝑓
⋅

𝑛𝑖𝑛𝑡𝑒𝑟𝑓

𝑛𝑖,𝑗
                                                                              (24)                        



with i=1…1280 and j=1…93. Actually, the difference 𝛿𝐿𝑗 = 𝐿𝑖+1,𝑗 − 𝐿𝑖,𝑗between two consecutive displacements is 

more useful for MeGas calibration purposes. As for the diameter evaluation, it has been considered the average 

difference for the j-th measure: 

𝛿𝐿𝑗 =
1

1279
⋅ ∑1279

𝑖=1 (𝐿𝑖+1,𝑗 − 𝐿𝑖,𝑗)                                                           

(25) 

The average difference over the 93 measurements is computed: 

 𝛿𝐿 =
1

93
⋅ ∑93

𝑗=1 𝛿𝐿𝑗                                                                      (26) 

The uncertainty associated to the 𝛿𝐿  has been obtained as the sum of squares of its type A and type B uncertainty 

contributions:  

𝑢(𝛿𝐿) =  √𝑢𝐴
2(𝛿𝐿) + 𝑢𝐵

2(𝛿𝐿)                                                        (27)       

where: 

𝑢𝐴(𝛿𝐿) = 𝜎𝑀𝐴𝑋(𝛿𝐿𝑗)                                                                     (28) 

and  

𝑢𝐵(𝛿𝐿) = 𝑢𝐵(𝛿𝐿𝑗)|𝑗=1…93 = 𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓 ⋅
𝜆0

𝜆0,𝑖𝑛𝑡𝑒𝑟𝑓
⋅

𝑛𝑖𝑛𝑡𝑒𝑟𝑓

𝑛
⋅ √

𝑢2(𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓)

𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓
2 +

𝑢2(𝜆0)

𝜆0
2 +

𝑢2(𝑛)

𝑛2                                         (29) 

The quantities 𝜆0,𝑖𝑛𝑡𝑒𝑟𝑓 and ninterf, used by the electronics of the interferometer, are considered two constants and 

therefore without uncertainty. The uncertainty associated to the displacement measure 𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓 , has been calculated 

with the usual propagation formula: 

𝑢(𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓) = √𝑢2(𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓,𝑐𝑜𝑠) + 𝑢2(𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓,𝐴𝑏𝑏𝑒) + 𝑢2(𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓,𝑑𝑝)              

(30) 

where 𝑢(𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓,𝑐𝑜𝑠) is the uncertainty associated to the cosine error, 𝑢(𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓,𝐴𝑏𝑏𝑒) is the uncertainty associated 

to the Abbe error and 𝑢(𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓,𝑑𝑝) is the uncertainty associated with the dead path. The contribution due to the 

interferometer resolution has been considered negligible.  



The errors (cosine, Abbe and dead path) were assumed equal to zero and their contributions were taken into account 

by including them into the uncertainty computation. 

The uncertainty associated with the cosine error has been evaluated from a rectangular PDF whose amplitude is the 

estimation of the maximum allowed misalignment of the laser beam, obtained by applying a safety factor greater than 

10 to the maximum misalignment of the laser beam estimated by using an electronic position sensor.    

The uncertainty associated with the Abbe error has been evaluated from the quality of the piston manufacturing 

(motion-measurement axes translation) and the maximum "reasonable" rotation and assuming, again, a rectangular 

PDF. 

The uncertainty associated with the dead path error has been evaluated from an estimate of the maximum refractive 

index variation in the dead path, and assuming a rectangular PDF of equal amplitude.  

Further details of the three contributions in Eq. 30 can be found in [8] and [11].  

The results of this analysis are summarized in Table 3. 

The second uncertainty contribution in Eq. 29, namely  𝑢(𝜆0), is derived from the calibration certificate of the 

interferometer and is equal to  𝑢(𝜆0) = 1.5 · 10−15 m.  

Finally the uncertainty associated with the refractive index u(n) has been evaluated from the Edlen empirical formula 

(Eq. 23) used for the computation of the refractive index n. In particular, the uncertainty associated to the refractive 

index n is calculated with the following propagation formula: 

𝑢(𝑛) =  √(
𝜕𝑛

𝜕𝜆0
)

2

⋅ 𝑢2(𝜆0) + (
𝜕𝑛

𝜕𝑡
)

2

⋅ 𝑢2(𝑇) + (
𝜕𝑛

𝜕𝑝
)

2

⋅ 𝑢2(𝑝) + (
𝜕𝑛

𝜕𝑅𝐻
)

2

⋅ 𝑢2(𝑅𝐻)                                           (31) 

The first term 𝑢(𝜆0) has already been described, the second, third and fourths terms are due to the ambient parameters 

(T, p and RH) variation during the measurement.  

The evaluation of the uncertainty of these three terms is not reported here. An example of values obtained by the 

ambient parameters uncertainty analysis follows in Table 4 and are obtained taking into account: the resolution of the 

instruments, their accuracy, the calibration certificate of the instruments and the standard deviation of the acquired 

samples. The example in Table 4 reports the computation of the reflective index uncertainty u(n) by means of the 

maximum standard uncertainty evaluated for every environmental parameter during all the measurements periods. 

During the 15-day measurement session, the average uncertainties in the refractive index were u(n)average= 3.68 · 10−8 



with a peak-peak variation of u(n)max= 4.76 · 10−8. The value u(n)average is used for the final computation of 

uncertainty associated to the piston displacement. 

Finally, the uncertainty associated to the piston displacement  𝛿𝐿 can be computed according to  Eq. 27 as follow: 

𝑢(𝛿𝐿) = √𝜎𝑀𝐴𝑋
2(𝛿𝐿𝑗) + (𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓 ⋅

𝜆0

𝜆0,𝑖𝑛𝑡𝑒𝑟𝑓
⋅

𝑛𝑖𝑛𝑡𝑒𝑟𝑓

𝑛
)

2

⋅ (
𝑢2(𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓)

𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓
2 +

𝑢2(𝜆0)

𝜆0
2 +

𝑢2(𝑛)

𝑛2
)                        (32) 

𝑢(𝛿𝐿) = 1.4 ⋅ 10−6 m.  

Table 5 summarizes the value of contributions expressed in Eq. 32. 

For the MeGas functioning it is necessary to estimate the displacement of the piston by means of the facility encoder 

and not by means of the interferometer that is used only during the procedure of the geometrical calibration of the 

piston. To do this the transfer function of the encoder (ERA180 Heidenain, with a resolution of 18000 pulse per round) 

is applied to the encoder output itself: 

𝛿𝐿𝑡𝑟𝑎𝑛𝑠_𝑓𝑢𝑛𝑐𝑡. = (
1

1800
 · 𝑁𝑒𝑛𝑐) · 1 ·  10−3m                                                                                                                   (33) 

where Nenc is the number of pulses output of the MeGas encoder for a displacement 𝛿𝐿 of the piston. Finally, according 

to the reported analysis, the mean displacement of the piston evaluated taking into account the encoder transfer 

function was found to be: 

𝛿𝐿 =  (
1

1800
 · 𝑁𝑒𝑛𝑐) ± 2.8 ·  10−6 m                                                                                                                    (34) 

Fig. 10 shows a detail of the step size variation caused by the screw pitch. 

Standard uncertainty 
Probability Density 

Function 

𝑢(𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓,𝑐𝑜𝑠)= 3·10-8 m rectangular 

𝑢(𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓,𝐴𝑏𝑏𝑒)= 5.8·10-7 m rectangular 

𝑢(𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓,𝑑𝑝)= 1.2·10-8 m rectangular 

𝑢(𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓)= 5.8·10-7 m 

Table 3. Contributions of uncertainty associated to the measured displacement 𝜹𝑳𝒊𝒏𝒕𝒆𝒓𝒇. 

 

 



Standard Uncertainty 
Probability 

Density Function 

𝑢(𝜆0)= 1.5·10-15  m normal 

𝑢(𝑇)max= 0.02 K; 𝑢(𝑡)max = 0.02 °C normal 

𝑢(𝑝)max= 4.30 Pa  normal 

𝑢(𝑅𝐻)max=1.75% normal 

Sensibility Coefficient (typical value) 

𝜕𝑛

𝜕𝜆0
=-1.2·10-8  nm-1 

𝜕𝑛

𝜕𝑝
=2.5·10-9 Pa-1 

𝜕𝑛

𝜕𝑡
=-1·10-6 K-1 

𝜕𝑛

𝜕𝑅𝐻
=-2·10-8 

𝑢(𝑛) = 2.27·10-8 

Table 4. Example of computation of  uncertainty associated to the refractive index 𝒖(𝒏). 

Standard uncertainty Probability density 

function 

𝜎𝑀𝐴𝑋(𝛿𝐿𝑗)=  1.2·10-6 m normal 

𝑢(𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓)= 5.8·10-7 m rectangular 

𝑢(𝜆0)= 1.5·10-15 m normal 

𝑢(𝑛) =  𝑢(𝑛)𝑎𝑣𝑒𝑟𝑎𝑔𝑒= 3.68·10-8 rectangular 

𝑢(𝛿𝐿) = 1.4 µ𝑚  

Table 5. Contributions of uncertainty associated to the piston displacement.  



 

Fig. 10. Mean step size as a function of piston displacement over a portion of its travel. The continuous black 

line is the mean step over the piston travel range, the dashed lines indicates its standard deviation, showing 

the step size variation caused by the screw pitch.  

As a comparison, the calibration performed in 1999 provided a mean diameter of 999.51 mm with an associated 

uncertainty of 0.02 mm, and the uncertainty associated to the displacement reading performed by the encoder was 

found to be 1,5 µ𝑚 

4.2 Displaced Volume Uncertainty 

As described in Sec. 2.2.1, the (nominal) volume of gas displaced by the piston can be computed from the piston 

displacement and its section (obtained from the diameter):  

∆𝑉 = 𝛿𝐿 ⋅ 𝜋 (
𝑑

2
)

2

                                                                                                                                                        (35) 

Eq. 35 is a simple multiplicative model, therefore its uncertainty can be easily obtained applying the usual formulations 

for this type of models [10]: 

𝑢(∆𝑉)

∆𝑉
=  √(

𝑢(𝛿𝐿)

𝛿𝐿
)

2

+ 2 ∙ (
𝑢(𝑑)

𝑑
)

2

                                                                                                                            (36) 



Furthermore, an uncertainty term associated to possible in-use thermal deformations of the driving screw (
𝑢(∆𝑉)

∆𝑉
)

𝑇,𝑆
  

was evaluated. Considering the maximum temperature variations described earlier, this term was evaluated to a 

relative value of 0.00036% (i.e. (
𝑢(∆𝑉)

∆𝑉
)

𝑇,𝑆
= 0.0000036), which will be added in quadrature to equation (36) to give: 

𝑢(∆𝑉)

∆𝑉
=  √(

𝑢(𝛿𝐿)

𝛿𝐿
)

2

+ 2 ∙ (
𝑢(𝑑)

𝑑
)

2

+ [(
𝑢(∆𝑉)

∆𝑉
)

𝑇,𝑆
]

2

                                                                                                (37) 

Substituting the values obtained in Sec. 4.1.1. and Sec. 4.1.2, one will obtain that the uncertainty on the displaced 

volume is composed by two essentially constant terms, and by a term whose value is reduced as the piston 

displacement increases. It will be therefore possible to limit the overall uncertainty by increasing the piston 

displacement, which is the reason why MeGas procedures prescribe a minimum volume (i.e. a minimum displacement) 

for calibrations. 

Table 6 reports an example of  evaluation of the uncertainty associated with the displaced volume u(ΔV) in the case 

of ΔV=50 L and ΔV=100 L. It can be observed in Table 6 that the displaced volume relative uncertainty u(ΔV)/ ΔV 

is a decreasing function of the displacement alone under the assumptions discussed in the present paper. Additionally, 

it can be seen that, for such values of the displacement, the uncertainty components associated to the piston diameter 

and displacement are of the same order of magnitude. 

 

 

 

 

 

 

 



ΔV=50 L 

Standard uncertainty Probability density 

function 

𝑢(𝛿𝐿)

𝛿𝐿
=   2.197 · 10−5 

Rectangular 

𝑢(𝑑)

𝑑
= 2.1 · 10−5 

Normal 

(
𝑢(∆𝑉)

∆𝑉
)

𝑇,𝑆

= 3.6 · 10−6 
Rectangular 

𝑢(∆𝑉)

∆𝑉
= 3.71 · 10−5     →    𝑢(∆𝑉) = 1.86 · 10−3𝐿 

ΔV=100 L 

Standard uncertainty Probability density 

function 

𝑢(𝛿𝐿)

𝛿𝐿
=   1.098 · 10−5 

Rectangular 

𝑢(𝑑)

𝑑
= 2.1 · 10−5 

Normal 

(
𝑢(∆𝑉)

∆𝑉
)

𝑇,𝑆

= 3.6 · 10−6 
Rectangular 

𝑢(∆𝑉)

∆𝑉
=  3.19 · 10−5    →    𝑢(∆𝑉) = 3.19 · 10−3 𝐿 

Table 6. Example of uncertainties computation for a nominal displaced volume of  50 L (corresponding to a 

piston displacement of about  63.7 mm) compared to a nominal displacement volume of 100 L (corresponding 

to a piston displacement of approximately 127 mm) 

 

 



4.3 Other Uncertainty Sources 

Considering again Eq. 11, it can be observed that several components influence the final result in addition to the 

uncertainty associated with the measured volume. The following subsections are dedicated to the analysis of such 

components. 

4.3.1 Pressure measurement 

Pressures are measured using a barometer traceable to the Italian National Pressure Standard; the standard uncertainty 

associated to the barometer is obtained by considering the calibration uncertainty, taken directly from the relevant 

calibration certificate, the standard deviation of the calibration coefficient at the various calibration pressures, and the 

drift uncertainty, which is estimated based on the historical series of calibrations. Since the two pressure measurements 

are strongly correlated because they are performed through the same instrument, the uncertainty associated with their 

average can be considered equal to the average of their uncertainties, i.e. essentially the uncertainty associated with 

each measurement. As an example, data from the certificate presently used provide an overall standard uncertainty of 

2.82 Pa, approximated to 3 Pa; the pressure within the prover can be considered constant since the piston movement 

is sufficiently slow to rule out any dynamic pressure variations. Since the operating pressure of the piston is essentially 

the ambient pressure, which at the elevation of the laboratory is on average of about 98 kPa, it can be stated that  

𝑢(𝑝0)

𝑝0
=  

3

98000
=  3.1 · 10−5 

4.3.2 Temperature measurement 

Temperature within the chamber is measured using a set of 8 PT100 probes traceable to the Italian National 

Temperature Standard, positioned within the chamber; in particular, one of the probes stands 5 cm over the bore for 

gas exit, while the other 7 are placed within the gap between the piston and the chamber along three circumferences 

at different heights spanning most of the chamber height. By considering the calibration uncertainty and the estimated 

drift uncertainty, the total uncertainty associated to a single probe (PT100) is 0.01 K. The size of the chamber is quite 

large, therefore spatial variations of temperature are possible, albeit they will be mitigated by the mixing induced by 

the piston movements and by the fact that the temperature in the room is controlled as described earlier; the 

measurements performed with the 8 probes allow to determine an average temperature within the chamber, whose 

uncertainty can be evaluated as the standard deviation of the values measured by the different probes, and is computed 



at every temperature measurement (initial and final); a typical value for this contribution is of 0.02 K; this low value 

is justified by the mitigating effects described earlier. The composition in quadrature of the probes’ uncertainties and 

of the averaging uncertainty leads to a (typical) value of 0.0223 K, approximated to 0.025 K, and therefore, considering 

a typical working temperature of 20 °C (293.15 K), it comes out that 

 
𝑢(𝑇 )

𝑇
=  

0.025

293.15
= 8.5 · 10−5 

4.3.3 Initial volume estimate 

The initial volume of the measurement is evaluated by adding the dead volume estimate to the currently measured 

displaced volume. The dead volume is estimated through geometrical computations based on the design dimensions 

of the piston and the cylinder; the relative standard uncertainty associated with this value is estimated to be of about 

3% of the dead volume. Since the relative uncertainty associated with the measurement of the displaced volume is far 

smaller than this value, it can be considered that the relative uncertainty of the initial volume corresponds to the 

relative uncertainty associated with the dead volume. Notice that applying the estimate for the relative uncertainty of 

the dead volume to the whole initial volume provides an estimate which is more and more detrimental as the piston 

rises within the prover. Though, due to the very small sensitivity coefficient associated with the initial volume (see 

Sec. 4 for details and Table 7 for an example), this does not substantially impact the final uncertainty estimate of the 

whole test rig.  

4.3.4 Time measurement 

Time is measured through a quartz chronometer included in the control system of the test rig; this chronometer is 

periodically checked against a precision chronometer traceable to the Italian National Time Standard. The uncertainty 

associated to the quartz chronometer due to this checking procedure is estimated precautionary to 1 ms; dividing this 

value by the minimum test time of 60 s, one gets for the maximum value of the time uncertainty:  

 
𝑢(𝑡)

𝑡
=  

0.001

60
= 1.7 · 10−5   

 

4.3.5 Gas Properties Estimate 



The gas properties Mmol and R are obtained from suitable databases; in particular, as of the present date, the molar 

mass, together with its uncertainty, is obtained from the IUPAC Technical Report [14]; as an example, when pure 

molecular nitrogen (N2) is used, such tables provide Mmol = 28.013710 ± 0.00085, i.e. a relative uncertainty of 

0.003%. The gas composition is not considered as a possible source of uncertainty in the case of pure gases (which is 

the case considered for the definition of the CMC) since the laboratory uses gas with purity of at least 5.5 (99.9995% 

pure). Regarding the molar gas constant 𝑅, this value is taken from the CODATA recommended values list maintained 

by NIST [9]; since the 2018 revision, this value is considered as exact and therefore not affected by uncertainty. 

4.3.6 Reference Conditions  

The reference conditions used for the normalization of the results can have two sources, depending on the application. 

In the simplest case, such conditions are standardized conditions, therefore they are exact values not affected by any 

uncertainty; in this case the last two terms in Eq. 11 are zero. Notice, though, that in this case an additional uncertainty 

term associated with the method used by the DUT for the normalization of its output to the same reference conditions 

must be evaluated, but this is outside the scope of the present paper. On the other hand, if the reference conditions are 

defined as the ones at the DUT, the last two terms of Eq. 11 correspond to the uncertainty associated to the 

measurement of such conditions, which can be measured either by instruments associated to the DUT itself, or by the 

instrumentation available to the laboratory. In both cases, the evaluation of these terms is performed in the same way 

as discussed in Sec. 4.3.1 and Sec. 4.3.2 by replacing the values indicated there with the corresponding values of the 

employed instrumentation and the estimate for the fluctuation of the thermodynamic conditions at the DUT. 

4.3.7 Leaks  

The presence of leaks from the machine openings is periodically checked by creating a pressure differential with the 

ambient equal to the maximum operating pressure of the piston; the pressure within the piston is then monitored for 

at least one hour to check for possible deviations, while checking the corresponding temperature variations and 

compensating for them; experimental results show that leakages from the piston are negligible. 

 

 



4.3.8 Compressibility factor Z  

Possible deviations of the gas behavior from the ideal gas law, which is assumed in the evaluation of the densities, 

were considered by computing the variations of the compressibility factor Z in the case of pure nitrogen (typically 

used in the test rig) through the software REFPROP Mini by NIST [15]; the results show that for a variation of 2000 

Pa and 0.2 K (which are well beyond the admissible variations of conditions within the prover during one test, but 

might represent the difference between conditions in the test rig and at the DUT in unfavorable conditions) the 

variation of the compressibility factor is within 7 parts per million; since this value is largely smaller than other 

uncertainty components, it is considered as negligible. 

 

5. Uncertainty budget 

This section summarizes the different uncertainty contributions to define the uncertainty budget associated with the 

primary gas flow standard at MeGas. 

The gas flow is computed according to Eq. 11 here reported for the reader.  

𝑢2(𝑄𝑉)

𝑄𝑉
2 = [

𝑢2(𝑝0)

𝑝0
2 +

𝑢2(𝑇0)

𝑇0
2 ] +

𝑢2(∆𝑉)

∆𝑉2 +
(𝜌2−𝜌1)2

𝜌0
2 ∙

𝑉1
2

∆𝑉2 ∙  
𝑢2(𝑉1)

𝑉1
2 + 

𝑢2(𝑡)

𝑡2  +
𝑢2(𝑀𝑚𝑜𝑙)

𝑀𝑚𝑜𝑙
2  +  

𝑢2(𝑅)

𝑅2 +
𝑢2(𝑇𝑟𝑒𝑓)

𝑇𝑟𝑒𝑓
2 +

𝑢2(𝑝𝑟𝑒𝑓)

𝑝𝑟𝑒𝑓
2                   

Table 7 shows an example of uncertainty budget in case of following typical conditions:  

pref = po = 98000 Pa, Tref = T0= 293.15,  ΔV= 100 L, V1 = 800 L, flow rate = 100 L/min, measurement time = 1 min 

and a variation of p and T conditions of about 20 Pa and 0.1 K between the initial conditions and the final conditions 

of measurement corresponding for this example to: p1= 97990 Pa, p2= 98010 Pa, T1=293.10 K, T2= 293.20 k,  ρ0 = 

1.126135 kg/m3 ρ1 =1.12621 kg/m3 , ρ2 = 1.12606 kg/m3. 

 

 

 

 

 

 

 

 



 

Relative uncertainty 

Probability 

density 

function 

Sensitivity 

coefficient 

Contribution Relative 

weight 

(%) 

𝑢(𝑝0)

𝑝0

=  
3

98000
= 3.1 · 10−5 

Normal 

1 9.61 · 10−10 4.9 

𝑢(𝑇0)

𝑇0

=  
0.025

293.15
= 8.5 · 10−5 

Normal 

1 7.225 · 10−9 37.0 

𝑢(∆𝑉)

∆𝑉
= 3.19 · 10−5 Normal 

1 9.61 · 10−10 4.9 

𝑢(𝑉1)

𝑉1

= 3.0 · 10−2 
Rectangular 

1.1355 · 10−6 1.022 · 10−9 5.2 

𝑢(𝑡)

𝑡
=  

0.001

60
= 1.7 · 10−5 Rectangular 

1 2.89 · 10−10 1.5 

𝑢(𝑀𝑚𝑜𝑙)

𝑀𝑚𝑜𝑙

= 3.0 · 10−5 
Normal 

1 9.00 · 10−10 4.6 

𝑢(𝑅)

𝑅
= 0  (𝑒𝑥𝑎𝑐𝑡 𝑣𝑎𝑙𝑢𝑒) --- 

- - - 

𝑢(𝑇𝑟𝑒𝑓)

𝑇𝑟𝑒𝑓

=  
𝑢(𝑇0)

𝑇0

=  8.5 

· 10−5 

Normal 

1 7.225 · 10−9 37.0 

𝑢(𝑝𝑟𝑒𝑓)

𝑝𝑟𝑒𝑓

=  
𝑢(𝑝0)

𝑝0

= 3.1 · 10−5 
Normal 

1 9.61 · 10−10 4.9 

𝑢(𝑄𝑉)

𝑄𝑉

= 1.40 · 10−4 

Table 7. Example of computation of the relative uncertainty of the gas flow at the MeGas primary standard. 

 



It can be observed that the main contributions to the overall uncertainty are the ones associated with the temperature 

measurement, as could be expected. It is also to be noticed that the other contributions, and in particular the two 

associated to volume measurement, have approximately the same magnitude. 

 

Q / L/min ΔV /L t / min 𝑢(𝑄𝑉)

𝑄𝑉
 / - 

100 100 1 1.40 · 10-4 

50 50 1 1.41 · 10-4 

10 10 1 1.78 · 10-4 

1 1 1 1.11 · 10-3 

1 50 50 1.40 · 10-4 

Table 8. Computation of the relative uncertainty of the gas flow at the MeGas primary standard for five 

representative cases, at the same  condition of Table 7 

It can be observed that, as the delivered volume decreases, the uncertainty associated with the flow rate increases, and 

quite dramatically for very low volumes. This is the reason why MeGas procedures prescribe a minimum delivered 

volume of 50 L for measurements. It can be noticed by comparing the second and the last row that also the 

measurement time has an influence, but similar computations show that this effect is very small for measurement 

times larger than one minute, which is why MeGas procedures also prescribe a minimum measurement time of 60 s. 

The results discussed in the present article will be of course validated through appropriate International Comparisons; 

one of these comparisons is currently underway, and INRIM already performed its set of measurements, although 

results are not yet available.  

6. Conclusions 

This paper presents a complete analysis of the measurement capabilities of the MeGas gas flow standard including 

uncertainty. Its features, traceability chain and the uncertainty budget of the measurements it can perform have been 

described in detail. Special attention has been dedicated to the dimensional calibration of the piston diameter and 

displacement. The values obtained from this calibration are in good agreement with the one that was carried out at the 

piston initial installation in 1999, thus confirming the stability of the standard. This work supports the uncertainties 

claimed by INRIM but, above all, provides a useful guide for a study of the uncertainty associated with a general 



piston proper gas flow standard. International comparisons are certainly a fundamental exercise for confirming or not 

the measurement capabilities of a standard, but in the event that the comparison has not been concluded successfully, 

the results of comparison do not provide a certain indication of what the error may be in assessing the uncertainty of 

the sample compared. Providing the uncertainty budget details of a primary gas flow standard can therefore be a valid 

tool to allow a theoretical comparison of standard as well. 

References    

[1] G. Cignolo, A. Rivetti, G. Martini, F. Alasia, G. Birello, G. La Piana, “The National Standard Gas Prover of the 

IMGC-CNR”, in Proceedings of the 10th Flomeko Conference, Salvador (Brazil), 5-9 June, 2000 

[2] H. Bellinga, F.J. Delhez “Experience with a high-capacity piston prover as a primary standard for high-pressure 

gas flow measurement”, 1993, Flow Measurement and Instrumentation, 4(2): 85-89. 

[3] R.F. Berg, T. Gooding, R.E. Vest “Constant pressure primary flow standard for gas flows from 0.01 cm /min to 

100 cm /min (0.007–74 μmol/s)”, 2014, Flow Measurement and Instrumentation, 35: 84-91. 

 [4] M.P. van der Beek, R. van der Brink “Gas Oil Piston Prover, primary reference values for Gas-Volume”, 2015, 

Flow Measurement and Instrumentation, 44: 27-33. 

[5] Z.P. Xu, J.Y: Dai, H.Y. Chen, D.L. Xie “Development of a reciprocating double-pistons gas prover”, 2014, Flow 

Measurement and Instrumentation, 38: 116-120. 

[6] Anonymous, 2009, Details omitted for double-anonymized reviewing  

[7] Anonymous, 2010, Details omitted for double-anonymized reviewing 

[8] Anonymous, 2019, Details omitted for double-anonymized reviewing 

[9] Anonymous, 2019, Details omitted for double-anonymized reviewing  

[10] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML. Evaluation of measurement data — Guide to the 

expression of uncertainty in measurement. Joint Committee for Guides in Metrology, JCGM 100:2008.  

[11] Anonymous, 2020, Details omitted for double-anonymized reviewing 

[12] https://emtoolbox.nist.gov/Wavelength/Equation2.asp 

https://emtoolbox.nist.gov/Wavelength/Equation2.asp


[13] https://physics.nist.gov/cuu/Constants/bibliography.html 

[14] Meija, Juris, Coplen, Tyler B., Berglund, Michael, Brand, Willi A., De Bièvre, Paul, Gröning, Manfred, Holden, 

Norman E., Irrgeher, Johanna, Loss, Robert D., Walczyk, Thomas and Prohaska, Thomas. "Atomic weights 

of the elements 2013 (IUPAC Technical Report)" Pure and Applied Chemistry, vol. 88, no. 3, 2016, pp. 265-

291. https://doi.org/10.1515/pac-2015-0305 

[15] Lemmon, E.W., Bell, I.H., Huber, M.L.and McLinden, M.O. “NIST Standard Reference Database 23: Reference 

Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0” , National Institute of Standards 

and Technology, Standard Reference Data Program, Gaithersburg, 2018. 

https://physics.nist.gov/cuu/Constants/bibliography.html
https://doi.org/10.1515/pac-2015-0305


Metrological features of the Large Piston Prover at INRIM  

Abstract 

INRIM realizes its flow rate standard using three distinct facilities, aimed at measuring different flow rate ranges; in 

particular, for the largest flow range rate (10-2600 L/min) a piston prover is used. This machine is of the volumetric 

type, therefore its traceability can be obtained through dimensional calibration of the piston, which has a nominal 

diameter of 1000 mm and a nominal stroke of 1200 mm.  

The present paper describes in detail the features of the standard, its traceability chain and the uncertainty budget of 

the measurements it can perform. The uncertainty budget directly determines the Calibration and Measurement 

Capabilities claim in the range available to the test rig. A detailed analysis of the various uncertainty components will 

be presented and discussed. Special attention will be dedicated to the dimensional calibration of the piston, since it is 

of paramount importance for the determination of the main uncertainty component. This calibration is particularly 

challenging since, due to the large size of the piston, it must be carried on in-situ, thereby requiring a set of special 

adaptations with respect to a standard calibration of a cylinder. It will be shown that the calibration of the piston 

recently performed is in good accordance with the one that was carried out at the piston initial installation in 1999, 

thus confirming the stability of the standard. 

Keywords 

primary flow standard; volumetric calibration; uncertainty analysis; test rig development; flow calibration 

1. Introduction 

Accurate measurement of gas flow rate is a field whose importance is well established due to the wide range of 

application where such quantity is of paramount importance (e.g. fuel gas exchange, process gas measurement in 

applications connected to medical/chemical industry, etc.); presently, there is a growing need for accurate calibration 

of mass flow meters with various Full Scale Range (FSR), that have an increasingly wide field of application (e.g. for 

dynamical gas mixing, aerospace applications, etc.). The flow rates of interest range from fractions of cubic 

millimeters per second to several hundreds of liters per second. For such a range of flow rates, a robust and reliable 

measurement technology is the piston prover volumetric method, since it provides a carefully controlled flow of gas; 

its accurate measurement requires a reliable and precise knowledge of the relationship between delivered volume and 
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piston movement, the possibility to precisely measure the gas temperature and pressure, and the possibility of using 

high purity gases for the tests. INRIM operates two piston provers (in addition to a bell prover) to realize the Italian 

National Standard of gas flow rate. Specifically, one of the pistons is dedicated to extremely low flow rates (from 

≈ 0.1 Cubic Centimeters per minute - CCM to ≈ 1.2 Liters per minute) and will not be 

discussed here. The piston which is the subject of the present paper is the bigger one, called MeGas, which generates 

flows ranging from ≈ 1 Liter per minute to ≈ 2500 Liters per minute, although the higher flow rate 

is usually self-limited to about 1000 Liters per minute. INRIM has operated the MeGas piston prover for several years 

now [1]; its features include a very accurate piston machining, reduced movement friction, accurate measurement of 

the piston movement and of the gas thermodynamic conditions, and temperature stabilization of the environment. 

Although all of these features are of great importance and allow the improvement of the measurement accuracy, the 

main requirement for obtaining high precision measurement is still an accurate calibration of the volume of the piston. 

In this paper a full uncertainty budget of the test rig and the methods for determining the various uncertainty 

contributions will be described in detail, alongside with some considerations on the implications of such a budget for 

the future developments of the machine.  

The piston prover concept has been used for a long time now; One of the first well-documented developments of a 

piston prover for use as a primary standard can be found in [2], where the adaptation of a piston prover built for liquid 

measurements to gas measurements is described. Since then, several variants and adaptations have been developed for 

various applications. A recent review of piston provers used as primary standards can be found in [3], alongside with 

a description of their theory of operation. In [4] a large, hydraulically-driven piston prover is described, including a 

discussion on the dimensional analysis of the piston itself. [5] discuss the double-piston concept, which has the 

advantage of allowing measurements during both runs of the piston, but at the price of an increase in complexity. 

In order to provide a reference frame for the present work, the metrological properties of a few test rigs developed in 

other NMIs, taken from the BIPM KCDB, are presented in the following Table 1: 

 

 

 

 

 



 

NMI Standard type 
Range  

/m3/h 

Uncertainty  

/ % 

INRIM 
Piston (standard 

described here) 

1-150 0.05 

INRIM Bell 0.06-6 0.12 

VSL Bell 1-400 0.09 

VSL Piston (see also [4]) 5-230 0.06 to 0.29 

CMI Bell 0.5-280 0.07 

Table 1. Metrological properties of some gas flow primary standard. 

 

     This is the third INRIM work ([6], [7]) in a series of papers that aim to disseminate the knowledge of flow 

measurement standards focusing on a metrological point of view. Authors think that the hypotheses and the theories 

underlying the uncertainty budget of a standard are fundamental for the correct evaluation of its uncertainties, but 

often the details of this analysis are reported in languages other than English or in laboratory procedures and technical 

reports which are not open access. The theoretical work of uncertainty analysis must always precede the results of 

international comparisons which must be limited to support the validity of detailed uncertainty evaluations. It is the 

authors' opinion that sharing and comparing also the theoretical evaluation of the uncertainty and not only the 

numerical results is important. This paper has been divided in sections in order to facilitate its reading and make the 

analysis even clearer and therefore usable by those who do not yet have solid experience in the field of primary 

standards. 

2. Facility and instrumentation description 

2.1. The Measurement ambient 

The MeGas facility is located at the gas flow laboratory in INRIM. The laboratory is temperature controlled and the 

temperature during calibration can be set in the range from 15 °C to 25 °C. Whenever the temperature setting is 

changed, at least 12 hours should be waited before taking measurements. Under normal conditions, the 

temperature is set to 20 °C. The relative humidity value is currently not controlled but is measured and recorded 

using a TESTO thermo-hygrometer data logger. The ambient pressure too is not controlled and it is determined, 



with small variations, by the external atmospheric pressure and is measured by a Ruska barometer. During a single 

measure of a calibration, the pressure changes must be contained within ±200 Pa. If this condition is not met, the 

calibration is considered invalid and repeated. 

 

2.2. The Piston Prover  

The MeGas test rig described in the present paper, is a single-stroke, plunger-type piston prover. It was designed and 

built at the then-IMGC (now INRIM) in the mid-1980s with the aim of developing the largest piston prover that could 

be housed in the existing laboratory premises. The goal of the development was the reduction of one order of 

magnitude of the “purely volumetric” uncertainty components that affect bell provers. This was obtained by 

eliminating the oil bath and by adopting a rigid, precisely machined and measured body to sweep the volume, which 

naturally leads to the piston prover concept. The plunger type (namely a long, vertical cylindrical piston forced to sink 

through a gasket into a slightly larger, rigid but mechanically unfinished chamber containing the gas) was preferred 

over a traditional piston-cylinder system because of metrological (the external diameter can be measured more 

accurately than the internal one) and practical reasons (it is easier and cheaper to machine the piston than the cylinder, 

and the gasket is more easily accessible).  

The resulting device is a structure 6 m high (Fig. 1), with at its top a platform (Fig. 1A) where a finely controlled 

brushless motor drives, through a gearbox, the female ball-screw of a lead screw (Fig. 1B) connected with the piston. 

This apparatus causes the vertical movement of the piston (Fig. 1C) and the emission of pulses from a rotating encoder 

(Fig. 1A) fitted on the female screw. The piston is constituted by a 1000 mm nominal diameter, 1630 mm long and 14 

mm thick carbon-steel cylinder fitted to a massive bottom flange. The external surface of the cylinder is chromium 

plated, ground and polished. The leak-proof gasket at the top of the chamber is a Teflon-coated, 1000 mm diameter 

O-ring compressed to the necessary and adjustable extent by an upper flange. The internal diameter of the 

measurement chamber (Fig. 1D) is 1095 mm; in the clearance between its walls and the piston, 10 Platinum Resistance 

Temperatures (PRTs) are installed at different heights and positions in order to measure the average gas temperature 

and to detect possible non uniformities. The chamber rests on the 1950 mm diameter base of the prover.  A bended 

pipe is connected to a 100 mm bore at the center of the base which conveys the gas displaced by the piston towards 

the test line. A group of automatically operated valves (a safety valve, one for admission of atmospheric air and one 



for gas delivery to the test line) are installed at the facility exit (Fig. 1E) . The internal volume of the prover is about 

1500 L when the piston is at its upper rest position; the volume of the piston is more than 1200 L, however, considering 

the parts of the piston stroke that must be devoted to acceleration, deceleration and the emergency stop switches 

installed at both ends, the largest gas volume that can be displaced and measured is about 800 L. 

2.2.1 Mode of Operation  

The operation of the prover is fully automated and controlled by a specific electronic apparatus, which controls the 

movement according to the required mode. The instrumentation – namely the encoder, the chronometer, the various 

transducers measuring piston velocity, displaced volume, temperatures and pressure - is interfaced to a PC for 

recording of the data. 

The mode of operation of the piston is as follows. The piston is placed at its initial position (top or bottom depending 

whether supply or admission mode is required). A period of one minute is allowed for temperature stabilization, then 

the piston is moved at the programmed speed. After velocity and pressure stabilize, the measurement phase begins, 

i.e. the initial measurement conditions (position of the piston yi and thermodynamic conditions pi, Ti) are recorded, 

while the chronometer is started. Once the required displacement has been performed, the final measurement 

conditions (position of the piston yf and thermodynamic conditions pf, Tf) are recorded and the chronometer is stopped, 

providing the test time Δt; the piston is then brought to rest. The difference Δy = yf -yi between the initial and final 

positions of the piston is the measured displacement of the piston and, when multiplied by the piston base area (which 

is considered as a constant, see Sec. 4), allows the computation of the displaced volume of gas ΔV. The initial and 

final thermodynamics conditions allow to compute the initial and final gas densities, which are used to determine the 

reference volume and, together with the elapsed time, the reference flow rate provided by the piston, as described in 

detail in Sec. 3. Depending on the working mode, supply or admission, the sign of Δy will be different; this will lead 

to slightly different corrections in the determination of the final values, as described in Sec. 3. It is important to notice 

that measurements are taken after the stabilization of the piston movement and of the pressure, i.e. in stationary 

conditions. No unsteady effects are therefore taken into account. 



 

Fig. 1. MeGas Facility, A: MeGas encoder and piston control, B: screw, C: Piston, D: measurement chamber, 

E: facility exit 

2.3. The measurement system 

The traceability of the measurements carried out in the gas flow laboratory is guaranteed by the metrological chain 

detailed in the following traceability diagram (Fig. 2). 

The traceability of the piston displacement and of the piston base area are obtained by means of the geometrical 

calibration of MeGas.  

The traceability of the thermometric chain, the barometer and the hygrometer is guaranteed by calibration to the 

respective primary standards at INRIM.  

Traceability of the chronometer is to the Italian National Time, as described in detail in Sec. 4.3.4. 



Since this section focuses on the measurement system of the MeGas, it is important to specify that the measurement 

chain of MeGas during its functioning as primary standard (Sec. 2.2) does not correspond to the measurement chain 

used for the MeGas geometrical calibration (Sec. 4.1).    

The measurement chain of the geometrical calibration of MeGas is shown in Fig. 5. During the MeGas geometrical 

calibration, the displacement was evaluated by an interferometric system, traceable to the INRIM primary length 

standard whereas the piston base area was evaluated by a couple of linear encoders that measured the diameter of the 

piston at different heights. The two linear encoders are traceable to the primary standard of length by calibration at 

INRIM. 

A special, stainless steel bar traceable to the LNE primary length standard was used as reference for the linear encoders 

during the MeGas calibration. 

The geometrical calibration of the MeGas was described in detail by three previous works [8], [9], [11].  In Sec. 4 a 

brief description of the geometrical calibration procedure of the MeGas is summarized in order to provide the reader 

with the basic elements to better understand the uncertainty analysis and the uncertainty budget. 

 

 

Fig. 2. Traceability diagram of MeGas. The instruments framed in red (first level line) added to the instruments 

framed in green (second level line) constitute the measurement chain for the MeGas calibration procedure. The 

instruments framed in green also constitute the in-use measurement chain of the test rig. 

 



3. Model equation for the flow standard at MeGas  

The computation of the reference volume and of the flow rate provided by the piston is done using the so-called 

method of the balance of mass, i.e. by evaluating the mass of gas delivered (or accepted) by the prover during the test. 

It was chosen to use this method instead of the simple determination of the volume since it allows to keep directly in 

consideration the variations in thermodynamic conditions for the computation of the quantity of gas that has flown 

through the test rig bore; additionally, the result is invariant with the thermodynamic conditions, and can therefore be 

readily converted to any desired form (e.g. molar flow, volume flow of gas at reference condition etc.); finally, the 

method takes directly into account the effects of compression of the dead volume, which are anyway very small due 

to the small overpressures within the cylinder. In Sec. 4.3.3 and 5, it will also be shown that the uncertainty associated 

with the measurement can be controlled with relative ease by the application of this method. The drawback of the 

method is that it requires measuring the initial and final thermodynamic conditions of the gas; such measurements are 

described in detail in Sec. 4.3.1 and 4.3.2. The displaced mass of gas ΔM is then computed as the difference between 

the final mass (obtained by multiplying the final density times the final volume estimate) and the initial mass (obtained 

by multiplying the initial density by the initial volume estimate); this difference can be rewritten as the final density 

by multiplying the displaced volume ΔV, computed as described in Sec. 2.2.1, with the final density and by adding a 

correction term which depends on the density variation and on the initial volume: 

∆𝑀 =  𝜌2𝑉2 − 𝜌1𝑉1 =  𝜌2∆𝑉 +  𝑉1 (𝜌2 − 𝜌1)                               (1) 

This formulation of the equation shows that the uncertainty contribution of the initial volume is minimal (since it 

multiplies a value that is very small if the variation of thermodynamic conditions is small) and therefore even large 

uncertainties on the initial volume will affect only slightly the final result; in other words, it is not necessary to estimate 

the dead volume to a great accuracy, which is often difficult. ΔM can then be converted to the reference volume ΔVRef  

of gas – not to be confused with the displaced volume ΔV - at the specified reference conditions (which can be defined 

to a standard value, e.g. 0° C and 1 atm, or be the conditions at the Device Under Test - DUT) for comparison to the 

DUT output as follows: 

∆𝑉𝑅𝑒𝑓 =  
𝜌2𝑉2−𝜌1𝑉1

𝑀𝑚𝑜𝑙
∙

𝑅𝑇𝑟𝑒𝑓

𝑝𝑟𝑒𝑓
=  

𝜌2∆𝑉+ 𝑉1 (𝜌2−𝜌1)

𝑀𝑚𝑜𝑙
∙

𝑅𝑇𝑟𝑒𝑓

𝑝𝑟𝑒𝑓
                        (2) 



where R is the universal gas constant, Mmol is the molar mass of the test gas, Tref and pref are the thermodynamics 

conditions to be used for the conversion. 

It should be noted that in writing Eq. 1 it is assumed that the final volume is larger than the initial one (admission 

mode) in order to have a positive value of the mass variation and therefore of the reference volume. The corresponding 

equation for supply mode is slightly different in that signs are opposite; this leads to small changes in the final 

formulation used for the computations, but the analysis of this second formulation can be performed in the same way 

leading to similar results (not presented here for conciseness). 

The flow rate, in mass (QM) or volume (QV), is computed by dividing the computed mass or volume by test time 

measured by the chronometer: 

𝑄𝑀 =  
𝜌2𝑉2−𝜌1𝑉1

∆𝑡
=  

𝜌2∆𝑉+ 𝑉1 (𝜌2−𝜌1)

∆𝑡
                                          (3a) 

𝑄𝑉 =  
𝜌2𝑉2−𝜌1𝑉1

𝑡∙𝑀𝑚𝑜𝑙
∙

𝑅𝑇𝑟𝑒𝑓

𝑝𝑟𝑒𝑓
=  

𝜌2∆𝑉+ 𝑉1 (𝜌2−𝜌1)

𝑡∙𝑀𝑚𝑜𝑙
∙

𝑅𝑇𝑟𝑒𝑓

𝑝𝑟𝑒𝑓
                                  (3b) 

Eq. 3a and Eq. 3b represent the formulation of the model equations for the computation of the flow rate delivered or 

accepted by the prover, while Eq. 2 is the formulation for the computation of the reference volume delivered or 

accepted by the prover. In the following the uncertainty analysis will be performed starting from Eq. 3b, since the 

corresponding analysis for Eq. 2 and Eq. 3a can readily be obtained by elimination of some terms. 

4. Uncertainty analysis 

The uncertainty analysis will be performed according to the document JCGM 100:2008 [10] based on Eq. 3b. The 

latter can be rewritten as:  

𝑄𝑉 =  
∆𝑀

𝑡∙𝑀𝑚𝑜𝑙
∙

𝑅𝑇𝑟𝑒𝑓

𝑝𝑟𝑒𝑓
                                                                                       (4) 

Eq. 4 is a multiplicative model, therefore the uncertainty associated to it can readily be obtained as: 

 
𝑢2(𝑄𝑉)

𝑄𝑉
2 =

𝑢2(∆𝑀)

∆𝑀2 + 
𝑢2(𝑡)

𝑡2  +
𝑢2(𝑀𝑚𝑜𝑙)

𝑀𝑚𝑜𝑙
2  +  

𝑢2(𝑅)

𝑅2     +
𝑢2(𝑇𝑟𝑒𝑓)

𝑇𝑟𝑒𝑓
2 +

𝑢2(𝑝𝑟𝑒𝑓)

𝑝𝑟𝑒𝑓
2                                         (5)        



The last five terms in this equation can be obtained directly as will be shown in Sec. 4.2; though, a more detailed 

analysis is required for the first term. In order to perform such analysis, consider again Eq. 1 in its second form. The 

following sensitivity coefficients can be computed:  

𝜕∆𝑀

𝜕𝜌2
=  ∆𝑉 + 𝑉1;   

𝜕∆𝑀

𝜕𝜌1
= − 𝑉1;  

𝜕∆𝑀

𝜕∆𝑉
=  𝜌2 ;    

𝜕∆𝑀

𝜕𝑉1
=  𝜌2 − 𝜌1   

Since in Eq. 1 the quantities 𝜌1 and 𝜌2 are correlated, it is also necessary to consider the covariance term:  

𝐶𝑜𝑣(𝜌1, 𝜌2) = 𝜌0
2 ∙ [

𝑢2(𝑝0)

𝑝0
2 +

𝑢2(𝑇0)

𝑇0
2 ]                                                (6) 

Where the subscript 0 indicates the average between the corresponding initial and final quantities, under the hypothesis 

that variations of the thermodynamic conditions are small. 

Eq. (6) was obtained by replacing the density with its expression as a function of p and T, and developing the relevant 

equations for covariance, by considering small variations between initial and final conditions. The sensitivity 

coefficient for the covariance term is: 

𝜕∆𝑀

𝜕𝜌1
∙

𝜕∆𝑀

𝜕𝜌2
=  −𝑉1 ∙ (∆𝑉 +  𝑉1)                                                         (7) 

It is then possible to express the absolute standard uncertainty associated to the variation of mass within the prover as 

follows:  

𝑢2(∆𝑀) = (∆𝑉 +  𝑉1)2  ∙ 𝑢2(𝜌2) + (𝜌2)2  ∙ 𝑢2(∆𝑉) + (𝜌2 − 𝜌1)2  ∙ 𝑢2(𝑉1) + (𝑉1)2  ∙ 𝑢2(𝜌1) − 2 ∙ 𝑉1 ∙ (∆𝑉 + 𝑉1) ∙ 𝜌0
2 ∙ [

𝑢2(𝑝0)

𝑝0
2 +

𝑢2(𝑇0)

𝑇0
2 ]         (8) 

Uncertainties associated to the densities are expressed according to their dependency on the thermodynamic 

conditions. After developments and simplifications, one obtains:  

𝑢2(∆𝑀) = ∆𝑉2  ∙ 𝜌0
2 ∙ [

𝑢2(𝑝0)

𝑝0
2 +

𝑢2(𝑇0)

𝑇0
2 ] + 𝜌0

2  ∙ 𝑢2(∆𝑉) + (𝜌2 − 𝜌1)2  ∙ 𝑢2(𝑉1)                                                          (9) 

and, in relative form: 

𝑢2(∆𝑀)

∆𝑀2 = [
𝑢2(𝑝0)

𝑝0
2 +

𝑢2(𝑇0)

𝑇0
2 ] +

𝑢2(∆𝑉)

∆𝑉2 +
(𝜌2−𝜌1)2

𝜌0
2 ∙

𝑉1
2

∆𝑉2 ∙  
𝑢2(𝑉1)

𝑉1
2           (10)                        



which can be replaced in equation (5) to give: 

𝑢2(𝑄𝑉)

𝑄𝑉
2 = [

𝑢2(𝑝0)

𝑝0
2 +

𝑢2(𝑇0)

𝑇0
2 ] +

𝑢2(∆𝑉)

∆𝑉2 +
(𝜌2−𝜌1)2

𝜌0
2 ∙  

𝑉1
2

∆𝑉2 ∙  
𝑢2(𝑉1)

𝑉1
2 + 

𝑢2(𝑡)

𝑡2  +
𝑢2(𝑀𝑚𝑜𝑙)

𝑀𝑚𝑜𝑙
2  +  

𝑢2(𝑅)

𝑅2 +
𝑢2(𝑇𝑟𝑒𝑓)

𝑇𝑟𝑒𝑓
2 +

𝑢2(𝑝𝑟𝑒𝑓)

𝑝𝑟𝑒𝑓
2                  

(11) 

Since the present paper focuses on the geometrical calibration of the piston, the uncertainty sources associated to this 

calibration (diameter and displacement) are discussed separately in Sec. 4.1, while sources associated to the 

measurement system, to the measurement technique and to the environment (instruments, ambient conditions, etc.) 

are discussed in Sec. 4.3. 

 

4.1 Geometrical calibration of MeGas   

The geometrical calibration of MeGas consists in the evaluation of the mean diameter of the piston and of the piston 

displacement (by calibrating the MeGas encoder on site) in order to make the piston diameter and displacement 

traceable to the primary standard of length.  

The piston diameter has been evaluated by means of two linear encoders along seven generatrices of the cylindrical 

piston (see Fig. 3 and Fig. 4). The piston displacement has been evaluated by calibration of the encoder with an 

interferometer; the interferometer was placed below the MeGas base, the laser ray passing through the bore in the base 

providing the facility in- and outflow (see Fig. 5 and Fig. 6). 

The diameter and the displacement measurement chains are acquired simultaneously according the following 

sequence: 

1. the linear encoders are positioned on the chosen generatrix and zeroed on the reference bar;   

2. the temperature inside the chamber, the pressure and humidity in the laboratory are recorded; 

3. outputs from the interferometer and the linear encoders are recorded during several vertical translations (up- 

and downwards) of the piston; each translation is 1.28 m long with a 1 mm step, providing thus 1280 diameter 

measurements on each run;  

4. the temperature inside the chamber, the pressure and humidity in the laboratory are recorded again; 

5. after (at least) 7 repetitions the linear encoders are zeroed again; steps (1) to (4) are then repeated for another 

generatrix.  

The piston diameter could thus be estimated as the average of 93 x 1280 diameter acquisitions. 

Great care has been taken to allow the structure to settle after the operator disturbed its temperature, by monitoring 

the reference bar temperature and that of the air inside the cylinder.  



Full details of the procedure and complete measurement results are reported in [8] and [10]. Operations necessary to 

prepare the MeGas facility are detailed in [9].  

 

Fig. 3. Top view sketch of the piston with the positions of generatrices;  

 

Fig. 4. (a) – Linear encoder zeroed on the reference bar (yellow frame); (b) - linear encoder during measure 

along one generatrix of the cylindrical piston. 

 



 

Fig. 5. Scheme of the measurement chain for MeGas, geometrical calibration 

 



 

 

Fig. 6. (a) - Red arrows indicate the laser path. 1: interferometer, 2, 3 and 4: folding mirrors; 5: beam splitter 

+ corner cube (visible in Fig. 6 (b)); 6: corner cube positioned on the piston inferior surface (not visible in 

figure); the total dead path length is of about 200 mm. (b) – 5: beam splitter + corner cube (realizing the 

reference arm) placed on the internal surface of the base of the chamber 

 

 

Fig. 7. Acquisition trigger block scheme.  

 



4.1.1 Piston diameter  

According to the measurement procedure applied, the diameter of a singular acquisition is evaluated as:  

𝑑𝑖,𝑗 = (𝛥𝐿𝑖,𝑗 − 𝛥𝐿𝑅𝐸𝐹,𝑗) + 𝐿𝑅𝐸𝐹                                    (12) 

with i=1…1280 and j=1…93, where ΔLi,j is the i-th acquisition of the j-th measure and  ΔLREF,j is the corresponding 

reference output obtained as the mean value of the  measurements results ( ΔLREF,1,j and ΔLREF,2,j  ) obtained at different 

times (see point 1 and point 5 in the action list of Sec. 4.1) . The value  of the reference bar is given by means of the 

reference bar calibration certificate The corresponding value in the most recent certificate by LNE is: 

𝐿𝑅𝐸𝐹 = (0.999252 ±  0.000005)  m                

(13) 

The mean diameter over the 1280 acquisitions for the j-th measure is: 

𝑑𝑗 = 𝛥𝐿𝑗 − 𝛥𝐿𝑅𝐸𝐹,𝑗 + 𝐿𝑅𝐸𝐹                                                      (14) 

Finally, the mean diameter of the piston over the 93 measures is computed as:  

𝑑 =
1

93
⋅ ∑93

𝑗=1 𝑑𝑗                                                                                (15) 

The uncertainty associated to the single acquisition of the diameter, corresponding to the uncertainty of the 

measurement chain (Type B uncertainty), can be computed as: 

𝑢(𝑑𝑖,𝑗) = √𝑢𝐶𝐸𝑅𝑇
2 (𝛥𝐿) + 𝑢𝑅𝐸𝑆

2 (𝛥𝐿) + 𝑢2(𝛥𝐿𝑅𝐸𝐹,𝑗) + 𝑢2(𝐿𝑅𝐸𝐹)                  (16) 

where the value uCERT(ΔL) is derived from the calibration certificate of the linear encoders, the value uRES(ΔL)  is 

associated to the linear encoders resolution, the value u(ΔLREF,j)  is associated to the encoder zeroing on the reference 

bar and finally the  standard uncertainty u(LREF)  is derived from the reference bar calibration certificate. 

Each linear encoder was calibrated in INRIM. The uncertainty associated with each linear encoder was assessed by 

assuming a rectangular distribution with a semi-amplitude equal to the maximum correction of the reading which has 

to be applied according to the certificate. The uncertainty associated with the certificate  uCERT(ΔL) is the sum of the 

uncertainties associated to each encoder and the uncertainty associated with corrections, giving: 

𝑢𝐶𝐸𝑅𝑇(𝛥𝐿) = 2.19 ⋅ 10−6  m. 

The uncertainty associated to linear encoder resolution has been estimated to be uRIS(ΔL) ≈ 3 ⋅ 10−8. 

The uncertainty associate to the zeroing of the linear encoder system on the reference bar is computed assuming a 

rectangular distribution over the two measured values for each j-th measure: 



𝑢(𝛥𝐿𝑅𝐸𝐹,𝑗) = √
(𝛥𝐿𝑅𝐸𝐹,1,𝑗−𝛥𝐿𝑅𝐸𝐹,2,𝑗)2

12
                                              (17) 

and its numerical value is found to be 1.5 𝜇𝑚 approximately. With the value of u(LREF) = 5 𝜇𝑚 as reported on the 

calibration certificate of the reference bar, the uncertainty associated to the mean diameter of the j-th measure is 

evaluated as:  

𝑢(𝑑𝑗) = √𝜎2(𝑑𝑗) + 𝑢2(𝑑𝑖,𝑗)                                                      (18) 

where 𝑢(𝑑𝑖,𝑗) = 5.7 ⋅ 10−6 𝒎  according to Eq. 16  and the value of  𝜎 (𝑑𝑗) varies from 2.0 ⋅ 10−6 𝒎 to 3.4 ⋅

10−6 𝒎 among all the 93 measurement  distributions.    

The standard deviation of mean diameter calculated from the 7 generatrices (see Table 2) is 𝜎 (𝑑 ) = 2 ⋅ 10−5 𝑚 

The mean diameter uncertainty is calculated, similarly to Eq. 18, as: 

 𝑢(𝑑) = √𝜎2 (𝑑 ) + 𝑢2(𝑑𝑖,𝑗)  =  2.1 · 10−5  𝑚                                                                                                                    

(19) 

The mean diameter in the working range was therefore evaluated to be equal to: 

𝑑 = 0.99950 ±  4.2 · 10−5 𝒎                               (20) 

In Fig. 8 and Fig. 9 the mean diameter for each generatrix and the overall mean diameter are shown.  

 

Fig. 8. Piston full travel: mean diameter for each generatrix (in color) and mean of the means (dashed black) 

as a function of piston displacement for the piston full travel. The continuous black line represents the mean 

over the piston full travel, with its standard deviation indicated by the colored area. 

 



 

Fig. 9. Piston working range: mean diameter for each generatrix (in color) and mean of the means (dashed 

black) as a function of piston displacement for the piston displacement limited to the working range The 

continuous black line represents the mean over the piston, with its standard deviation indicated by the 

colored area. 

 

The mean diameter for each generatrix is tabulated below; the mean diameter and its standard deviation are also 

shown. 

generatrix 𝑑𝑗 / m 

R 0.999496 

A 0.999498 

B 0.999533 

C 0.999504 

D 0.999489 

E 0.999469 

F 0.999486 

𝒅  = 0.99950 m and 𝜎 (𝒅 ) = 2· 𝟏𝟎−𝟓 

m 

Table 2. Mean diameter 𝑑𝑗 for each generatrix and mean diameter of the piston 𝒅  

 



4.1.2 Piston displacement 

In an interferometric measure, the displacement L of an object is obtained by multiplying the number of  fringes N by 

half the wavelength λ of the laser used. 

𝐿 = 𝑁 ⋅
𝜆

2
                                                                             (21) 

In order to obtain the actual displacement L of the piston a correction factor for the vacuum wavelength and for the 

refractive index has to be applied to the interferometer output Linterf.  The actual displacement L is therefore computed 

as:  

𝐿 = 𝐿𝑖𝑛𝑡𝑒𝑟𝑓 ⋅
𝜆0

𝜆0,𝑖𝑛𝑡𝑒𝑟𝑓
⋅

𝑛𝑖𝑛𝑡𝑒𝑟𝑓

𝑛
                                                       (22)                          

where 𝜆0 is the laser vacuum wavelength obtained from the calibration certificate, 𝜆0,𝑖𝑛𝑡𝑒𝑟𝑓 and ninterf are the vacuum 

wavelength and the refractive index used by the interferometer electronics for the computation of L interf , which is a 

function of 𝜆0,𝑖𝑛𝑡𝑒𝑟𝑓 and ninterf; the refractive index n is calculated using the Edlén formula as given in Appendix A-

IV of the Engineering Metrology Toolbox of NIST, Eq. A49 [12] and recalled in Eq. 23 for clearness, where T, p and 

RH are, respectively, the values of temperature, pressure and relative humidity during the measurement, obtained as 

the respective means of the initial (Tin,j, pin, j, RHin,j) and the final conditions (Tfin,j, pfin, j, RHfin,j) for every travel j=1…93 

of the piston.   

𝑛(𝜆0,𝑇, 𝑝, 𝑅𝐻) = 𝑛𝑡𝑝(𝜆0,𝑇, 𝑝) − 10−10 ⋅ 𝑝𝑉(𝑅𝐻, 𝑇) ⋅ 292.75 ⋅
3.7345−0.0401⋅𝑆(𝜆0)

𝑇+273.15
                                                  (23) 

Authors decided to not add further details in this work about the computation of the refractive index n because it is a 

too much specific dimensional metrology topic. However, all details on the computation of n can be found in [11], 

[12] and [13].  

According the Eq. 22, the displacement Li,j for a single acquisition can be calculated as:  

𝐿𝑖,𝑗 = 𝐿𝑖,𝑗,𝑖𝑛𝑡𝑒𝑟𝑓 ⋅
𝜆0

𝜆0,𝑖𝑛𝑡𝑒𝑟𝑓
⋅

𝑛𝑖𝑛𝑡𝑒𝑟𝑓

𝑛𝑖,𝑗
                                                                              (24)                        



with i=1…1280 and j=1…93. Actually, the difference 𝛿𝐿𝑗 = 𝐿𝑖+1,𝑗 − 𝐿𝑖,𝑗between two consecutive displacements is 

more useful for MeGas calibration purposes. As for the diameter evaluation, it has been considered the average 

difference for the j-th measure: 

𝛿𝐿𝑗 =
1

1279
⋅ ∑1279

𝑖=1 (𝐿𝑖+1,𝑗 − 𝐿𝑖,𝑗)                                                           

(25) 

The average difference over the 93 measurements is computed: 

 𝛿𝐿 =
1

93
⋅ ∑93

𝑗=1 𝛿𝐿𝑗                                                                      (26) 

The uncertainty associated to the 𝛿𝐿  has been obtained as the sum of squares of its type A and type B uncertainty 

contributions:  

𝑢(𝛿𝐿) =  √𝑢𝐴
2(𝛿𝐿) + 𝑢𝐵

2(𝛿𝐿)                                                        (27)       

where: 

𝑢𝐴(𝛿𝐿) = 𝜎𝑀𝐴𝑋(𝛿𝐿𝑗)                                                                     (28) 

and  

𝑢𝐵(𝛿𝐿) = 𝑢𝐵(𝛿𝐿𝑗)|𝑗=1…93 = 𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓 ⋅
𝜆0

𝜆0,𝑖𝑛𝑡𝑒𝑟𝑓
⋅

𝑛𝑖𝑛𝑡𝑒𝑟𝑓

𝑛
⋅ √

𝑢2(𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓)

𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓
2 +

𝑢2(𝜆0)

𝜆0
2 +

𝑢2(𝑛)

𝑛2                                         (29) 

The quantities 𝜆0,𝑖𝑛𝑡𝑒𝑟𝑓 and ninterf, used by the electronics of the interferometer, are considered two constants and 

therefore without uncertainty. The uncertainty associated to the displacement measure 𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓 , has been calculated 

with the usual propagation formula: 

𝑢(𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓) = √𝑢2(𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓,𝑐𝑜𝑠) + 𝑢2(𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓,𝐴𝑏𝑏𝑒) + 𝑢2(𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓,𝑑𝑝)              

(30) 

where 𝑢(𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓,𝑐𝑜𝑠) is the uncertainty associated to the cosine error, 𝑢(𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓,𝐴𝑏𝑏𝑒) is the uncertainty associated 

to the Abbe error and 𝑢(𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓,𝑑𝑝) is the uncertainty associated with the dead path. The contribution due to the 

interferometer resolution has been considered negligible.  



The errors (cosine, Abbe and dead path) were assumed equal to zero and their contributions were taken into account 

by including them into the uncertainty computation. 

The uncertainty associated with the cosine error has been evaluated from a rectangular PDF whose amplitude is the 

estimation of the maximum allowed misalignment of the laser beam, obtained by applying a safety factor greater than 

10 to the maximum misalignment of the laser beam estimated by using an electronic position sensor.    

The uncertainty associated with the Abbe error has been evaluated from the quality of the piston manufacturing 

(motion-measurement axes translation) and the maximum "reasonable" rotation and assuming, again, a rectangular 

PDF. 

The uncertainty associated with the dead path error has been evaluated from an estimate of the maximum refractive 

index variation in the dead path, and assuming a rectangular PDF of equal amplitude.  

Further details of the three contributions in Eq. 30 can be found in [8] and [11].  

The results of this analysis are summarized in Table 3. 

The second uncertainty contribution in Eq. 29, namely  𝑢(𝜆0), is derived from the calibration certificate of the 

interferometer and is equal to  𝑢(𝜆0) = 1.5 · 10−15 m.  

Finally the uncertainty associated with the refractive index u(n) has been evaluated from the Edlen empirical formula 

(Eq. 23) used for the computation of the refractive index n. In particular, the uncertainty associated to the refractive 

index n is calculated with the following propagation formula: 

𝑢(𝑛) =  √(
𝜕𝑛

𝜕𝜆0
)

2

⋅ 𝑢2(𝜆0) + (
𝜕𝑛

𝜕𝑡
)

2

⋅ 𝑢2(𝑇) + (
𝜕𝑛

𝜕𝑝
)

2

⋅ 𝑢2(𝑝) + (
𝜕𝑛

𝜕𝑅𝐻
)

2

⋅ 𝑢2(𝑅𝐻)                                           (31) 

The first term 𝑢(𝜆0) has already been described, the second, third and fourths terms are due to the ambient parameters 

(T, p and RH) variation during the measurement.  

The evaluation of the uncertainty of these three terms is not reported here. An example of values obtained by the 

ambient parameters uncertainty analysis follows in Table 4 and are obtained taking into account: the resolution of the 

instruments, their accuracy, the calibration certificate of the instruments and the standard deviation of the acquired 

samples. The example in Table 4 reports the computation of the reflective index uncertainty u(n) by means of the 

maximum standard uncertainty evaluated for every environmental parameter during all the measurements periods. 

During the 15-day measurement session, the average uncertainties in the refractive index were u(n)average= 3.68 · 10−8 



with a peak-peak variation of u(n)max= 4.76 · 10−8. The value u(n)average is used for the final computation of 

uncertainty associated to the piston displacement. 

Finally, the uncertainty associated to the piston displacement  𝛿𝐿 can be computed according to  Eq. 27 as follow: 

𝑢(𝛿𝐿) = √𝜎𝑀𝐴𝑋
2(𝛿𝐿𝑗) + (𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓 ⋅

𝜆0

𝜆0,𝑖𝑛𝑡𝑒𝑟𝑓
⋅

𝑛𝑖𝑛𝑡𝑒𝑟𝑓

𝑛
)

2

⋅ (
𝑢2(𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓)

𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓
2 +

𝑢2(𝜆0)

𝜆0
2 +

𝑢2(𝑛)

𝑛2
)                        (32) 

𝑢(𝛿𝐿) = 1.4 ⋅ 10−6 m.  

Table 5 summarizes the value of contributions expressed in Eq. 32. 

For the MeGas functioning it is necessary to estimate the displacement of the piston by means of the facility encoder 

and not by means of the interferometer that is used only during the procedure of the geometrical calibration of the 

piston. To do this the transfer function of the encoder (ERA180 Heidenain, with a resolution of 18000 pulse per round) 

is applied to the encoder output itself: 

𝛿𝐿𝑡𝑟𝑎𝑛𝑠_𝑓𝑢𝑛𝑐𝑡. = (
1

1800
 · 𝑁𝑒𝑛𝑐) · 1 ·  10−3m                                                                                                                   (33) 

where Nenc is the number of pulses output of the MeGas encoder for a displacement 𝛿𝐿 of the piston. Finally, according 

to the reported analysis, the mean displacement of the piston evaluated taking into account the encoder transfer 

function was found to be: 

𝛿𝐿 =  (
1

1800
 · 𝑁𝑒𝑛𝑐) ± 2.8 ·  10−6 m                                                                                                                    (34) 

Fig. 10 shows a detail of the step size variation caused by the screw pitch. 

Standard uncertainty 
Probability Density 

Function 

𝑢(𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓,𝑐𝑜𝑠)= 3·10-8 m rectangular 

𝑢(𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓,𝐴𝑏𝑏𝑒)= 5.8·10-7 m rectangular 

𝑢(𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓,𝑑𝑝)= 1.2·10-8 m rectangular 

𝑢(𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓)= 5.8·10-7 m 

Table 3. Contributions of uncertainty associated to the measured displacement 𝜹𝑳𝒊𝒏𝒕𝒆𝒓𝒇. 

 

 



Standard Uncertainty 
Probability 

Density Function 

𝑢(𝜆0)= 1.5·10-15  m normal 

𝑢(𝑇)max= 0.02 K; 𝑢(𝑡)max = 0.02 °C normal 

𝑢(𝑝)max= 4.30 Pa  normal 

𝑢(𝑅𝐻)max=1.75% normal 

Sensibility Coefficient (typical value) 

𝜕𝑛

𝜕𝜆0
=-1.2·10-8  nm-1 

𝜕𝑛

𝜕𝑝
=2.5·10-9 Pa-1 

𝜕𝑛

𝜕𝑡
=-1·10-6 K-1 

𝜕𝑛

𝜕𝑅𝐻
=-2·10-8 

𝑢(𝑛) = 2.27·10-8 

Table 4. Example of computation of  uncertainty associated to the refractive index 𝒖(𝒏). 

Standard uncertainty Probability density 

function 

𝜎𝑀𝐴𝑋(𝛿𝐿𝑗)=  1.2·10-6 m normal 

𝑢(𝛿𝐿𝑖𝑛𝑡𝑒𝑟𝑓)= 5.8·10-7 m rectangular 

𝑢(𝜆0)= 1.5·10-15 m normal 

𝑢(𝑛) =  𝑢(𝑛)𝑎𝑣𝑒𝑟𝑎𝑔𝑒= 3.68·10-8 rectangular 

𝑢(𝛿𝐿) = 1.4 µ𝑚  

Table 5. Contributions of uncertainty associated to the piston displacement.  



 

Fig. 10. Mean step size as a function of piston displacement over a portion of its travel. The continuous black 

line is the mean step over the piston travel range, the dashed lines indicates its standard deviation, showing 

the step size variation caused by the screw pitch.  

As a comparison, the calibration performed in 1999 provided a mean diameter of 999.51 mm with an associated 

uncertainty of 0.02 mm, and the uncertainty associated to the displacement reading performed by the encoder was 

found to be 1,5 µ𝑚 

4.2 Displaced Volume Uncertainty 

As described in Sec. 2.2.1, the (nominal) volume of gas displaced by the piston can be computed from the piston 

displacement and its section (obtained from the diameter):  

∆𝑉 = 𝛿𝐿 ⋅ 𝜋 (
𝑑

2
)

2

                                                                                                                                                        (35) 

Eq. 35 is a simple multiplicative model, therefore its uncertainty can be easily obtained applying the usual formulations 

for this type of models [10]: 

𝑢(∆𝑉)

∆𝑉
=  √(

𝑢(𝛿𝐿)

𝛿𝐿
)

2

+ 2 ∙ (
𝑢(𝑑)

𝑑
)

2

                                                                                                                            (36) 



Furthermore, an uncertainty term associated to possible in-use thermal deformations of the driving screw (
𝑢(∆𝑉)

∆𝑉
)

𝑇,𝑆
  

was evaluated. Considering the maximum temperature variations described earlier, this term was evaluated to a 

relative value of 0.00036% (i.e. (
𝑢(∆𝑉)

∆𝑉
)

𝑇,𝑆
= 0.0000036), which will be added in quadrature to equation (36) to give: 

𝑢(∆𝑉)

∆𝑉
=  √(

𝑢(𝛿𝐿)

𝛿𝐿
)

2

+ 2 ∙ (
𝑢(𝑑)

𝑑
)

2

+ [(
𝑢(∆𝑉)

∆𝑉
)

𝑇,𝑆
]

2

                                                                                                (37) 

Substituting the values obtained in Sec. 4.1.1. and Sec. 4.1.2, one will obtain that the uncertainty on the displaced 

volume is composed by two essentially constant terms, and by a term whose value is reduced as the piston 

displacement increases. It will be therefore possible to limit the overall uncertainty by increasing the piston 

displacement, which is the reason why MeGas procedures prescribe a minimum volume (i.e. a minimum displacement) 

for calibrations. 

Table 6 reports an example of  evaluation of the uncertainty associated with the displaced volume u(ΔV) in the case 

of ΔV=50 L and ΔV=100 L. It can be observed in Table 6 that the displaced volume relative uncertainty u(ΔV)/ ΔV 

is a decreasing function of the displacement alone under the assumptions discussed in the present paper. Additionally, 

it can be seen that, for such values of the displacement, the uncertainty components associated to the piston diameter 

and displacement are of the same order of magnitude. 

 

 

 

 

 

 

 



ΔV=50 L 

Standard uncertainty Probability density 

function 

𝑢(𝛿𝐿)

𝛿𝐿
=   2.197 · 10−5 

Rectangular 

𝑢(𝑑)

𝑑
= 2.1 · 10−5 

Normal 

(
𝑢(∆𝑉)

∆𝑉
)

𝑇,𝑆

= 3.6 · 10−6 
Rectangular 

𝑢(∆𝑉)

∆𝑉
= 3.71 · 10−5     →    𝑢(∆𝑉) = 1.86 · 10−3𝐿 

ΔV=100 L 

Standard uncertainty Probability density 

function 

𝑢(𝛿𝐿)

𝛿𝐿
=   1.098 · 10−5 

Rectangular 

𝑢(𝑑)

𝑑
= 2.1 · 10−5 

Normal 

(
𝑢(∆𝑉)

∆𝑉
)

𝑇,𝑆

= 3.6 · 10−6 
Rectangular 

𝑢(∆𝑉)

∆𝑉
=  3.19 · 10−5    →    𝑢(∆𝑉) = 3.19 · 10−3 𝐿 

Table 6. Example of uncertainties computation for a nominal displaced volume of  50 L (corresponding to a 

piston displacement of about  63.7 mm) compared to a nominal displacement volume of 100 L (corresponding 

to a piston displacement of approximately 127 mm) 

 

 



4.3 Other Uncertainty Sources 

Considering again Eq. 11, it can be observed that several components influence the final result in addition to the 

uncertainty associated with the measured volume. The following subsections are dedicated to the analysis of such 

components. 

4.3.1 Pressure measurement 

Pressures are measured using a barometer traceable to the Italian National Pressure Standard; the standard uncertainty 

associated to the barometer is obtained by considering the calibration uncertainty, taken directly from the relevant 

calibration certificate, the standard deviation of the calibration coefficient at the various calibration pressures, and the 

drift uncertainty, which is estimated based on the historical series of calibrations. Since the two pressure measurements 

are strongly correlated because they are performed through the same instrument, the uncertainty associated with their 

average can be considered equal to the average of their uncertainties, i.e. essentially the uncertainty associated with 

each measurement. As an example, data from the certificate presently used provide an overall standard uncertainty of 

2.82 Pa, approximated to 3 Pa; the pressure within the prover can be considered constant since the piston movement 

is sufficiently slow to rule out any dynamic pressure variations. Since the operating pressure of the piston is essentially 

the ambient pressure, which at the elevation of the laboratory is on average of about 98 kPa, it can be stated that  

𝑢(𝑝0)

𝑝0
=  

3

98000
=  3.1 · 10−5 

4.3.2 Temperature measurement 

Temperature within the chamber is measured using a set of 8 PT100 probes traceable to the Italian National 

Temperature Standard, positioned within the chamber; in particular, one of the probes stands 5 cm over the bore for 

gas exit, while the other 7 are placed within the gap between the piston and the chamber along three circumferences 

at different heights spanning most of the chamber height. By considering the calibration uncertainty and the estimated 

drift uncertainty, the total uncertainty associated to a single probe (PT100) is 0.01 K. The size of the chamber is quite 

large, therefore spatial variations of temperature are possible, albeit they will be mitigated by the mixing induced by 

the piston movements and by the fact that the temperature in the room is controlled as described earlier; the 

measurements performed with the 8 probes allow to determine an average temperature within the chamber, whose 

uncertainty can be evaluated as the standard deviation of the values measured by the different probes, and is computed 



at every temperature measurement (initial and final); a typical value for this contribution is of 0.02 K; this low value 

is justified by the mitigating effects described earlier. The composition in quadrature of the probes’ uncertainties and 

of the averaging uncertainty leads to a (typical) value of 0.0223 K, approximated to 0.025 K, and therefore, considering 

a typical working temperature of 20 °C (293.15 K), it comes out that 

 
𝑢(𝑇 )

𝑇
=  

0.025

293.15
= 8.5 · 10−5 

4.3.3 Initial volume estimate 

The initial volume of the measurement is evaluated by adding the dead volume estimate to the currently measured 

displaced volume. The dead volume is estimated through geometrical computations based on the design dimensions 

of the piston and the cylinder; the relative standard uncertainty associated with this value is estimated to be of about 

3% of the dead volume. Since the relative uncertainty associated with the measurement of the displaced volume is far 

smaller than this value, it can be considered that the relative uncertainty of the initial volume corresponds to the 

relative uncertainty associated with the dead volume. Notice that applying the estimate for the relative uncertainty of 

the dead volume to the whole initial volume provides an estimate which is more and more detrimental as the piston 

rises within the prover. Though, due to the very small sensitivity coefficient associated with the initial volume (see 

Sec. 4 for details and Table 7 for an example), this does not substantially impact the final uncertainty estimate of the 

whole test rig.  

4.3.4 Time measurement 

Time is measured through a quartz chronometer included in the control system of the test rig; this chronometer is 

periodically checked against a precision chronometer traceable to the Italian National Time Standard. The uncertainty 

associated to the quartz chronometer due to this checking procedure is estimated precautionary to 1 ms; dividing this 

value by the minimum test time of 60 s, one gets for the maximum value of the time uncertainty:  

 
𝑢(𝑡)

𝑡
=  

0.001

60
= 1.7 · 10−5   

 

4.3.5 Gas Properties Estimate 



The gas properties Mmol and R are obtained from suitable databases; in particular, as of the present date, the molar 

mass, together with its uncertainty, is obtained from the IUPAC Technical Report [14]; as an example, when pure 

molecular nitrogen (N2) is used, such tables provide Mmol = 28.013710 ± 0.00085, i.e. a relative uncertainty of 

0.003%. The gas composition is not considered as a possible source of uncertainty in the case of pure gases (which is 

the case considered for the definition of the CMC) since the laboratory uses gas with purity of at least 5.5 (99.9995% 

pure). Regarding the molar gas constant 𝑅, this value is taken from the CODATA recommended values list maintained 

by NIST [9]; since the 2018 revision, this value is considered as exact and therefore not affected by uncertainty. 

4.3.6 Reference Conditions  

The reference conditions used for the normalization of the results can have two sources, depending on the application. 

In the simplest case, such conditions are standardized conditions, therefore they are exact values not affected by any 

uncertainty; in this case the last two terms in Eq. 11 are zero. Notice, though, that in this case an additional uncertainty 

term associated with the method used by the DUT for the normalization of its output to the same reference conditions 

must be evaluated, but this is outside the scope of the present paper. On the other hand, if the reference conditions are 

defined as the ones at the DUT, the last two terms of Eq. 11 correspond to the uncertainty associated to the 

measurement of such conditions, which can be measured either by instruments associated to the DUT itself, or by the 

instrumentation available to the laboratory. In both cases, the evaluation of these terms is performed in the same way 

as discussed in Sec. 4.3.1 and Sec. 4.3.2 by replacing the values indicated there with the corresponding values of the 

employed instrumentation and the estimate for the fluctuation of the thermodynamic conditions at the DUT. 

4.3.7 Leaks  

The presence of leaks from the machine openings is periodically checked by creating a pressure differential with the 

ambient equal to the maximum operating pressure of the piston; the pressure within the piston is then monitored for 

at least one hour to check for possible deviations, while checking the corresponding temperature variations and 

compensating for them; experimental results show that leakages from the piston are negligible. 

 

 



4.3.8 Compressibility factor Z  

Possible deviations of the gas behavior from the ideal gas law, which is assumed in the evaluation of the densities, 

were considered by computing the variations of the compressibility factor Z in the case of pure nitrogen (typically 

used in the test rig) through the software REFPROP Mini by NIST [15]; the results show that for a variation of 2000 

Pa and 0.2 K (which are well beyond the admissible variations of conditions within the prover during one test, but 

might represent the difference between conditions in the test rig and at the DUT in unfavorable conditions) the 

variation of the compressibility factor is within 7 parts per million; since this value is largely smaller than other 

uncertainty components, it is considered as negligible. 

 

5. Uncertainty budget 

This section summarizes the different uncertainty contributions to define the uncertainty budget associated with the 

primary gas flow standard at MeGas. 

The gas flow is computed according to Eq. 11 here reported for the reader.  

𝑢2(𝑄𝑉)

𝑄𝑉
2 = [

𝑢2(𝑝0)

𝑝0
2 +

𝑢2(𝑇0)

𝑇0
2 ] +

𝑢2(∆𝑉)

∆𝑉2 +
(𝜌2−𝜌1)2

𝜌0
2 ∙

𝑉1
2

∆𝑉2 ∙  
𝑢2(𝑉1)

𝑉1
2 + 

𝑢2(𝑡)

𝑡2  +
𝑢2(𝑀𝑚𝑜𝑙)

𝑀𝑚𝑜𝑙
2  +  

𝑢2(𝑅)

𝑅2 +
𝑢2(𝑇𝑟𝑒𝑓)

𝑇𝑟𝑒𝑓
2 +

𝑢2(𝑝𝑟𝑒𝑓)

𝑝𝑟𝑒𝑓
2                   

Table 7 shows an example of uncertainty budget in case of following typical conditions:  

pref = po = 98000 Pa, Tref = T0= 293.15,  ΔV= 100 L, V1 = 800 L, flow rate = 100 L/min, measurement time = 1 min 

and a variation of p and T conditions of about 20 Pa and 0.1 K between the initial conditions and the final conditions 

of measurement corresponding for this example to: p1= 97990 Pa, p2= 98010 Pa, T1=293.10 K, T2= 293.20 k,  ρ0 = 

1.126135 kg/m3 ρ1 =1.12621 kg/m3 , ρ2 = 1.12606 kg/m3. 

 

 

 

 

 

 

 

 



 

Relative uncertainty 

Probability 

density 

function 

Sensitivity 

coefficient 

Contribution Relative 

weight 

(%) 

𝑢(𝑝0)

𝑝0

=  
3

98000
= 3.1 · 10−5 

Normal 

1 9.61 · 10−10 4.9 

𝑢(𝑇0)

𝑇0

=  
0.025

293.15
= 8.5 · 10−5 

Normal 

1 7.225 · 10−9 37.0 

𝑢(∆𝑉)

∆𝑉
= 3.19 · 10−5 Normal 

1 9.61 · 10−10 4.9 

𝑢(𝑉1)

𝑉1

= 3.0 · 10−2 
Rectangular 

1.1355 · 10−6 1.022 · 10−9 5.2 

𝑢(𝑡)

𝑡
=  

0.001

60
= 1.7 · 10−5 Rectangular 

1 2.89 · 10−10 1.5 

𝑢(𝑀𝑚𝑜𝑙)

𝑀𝑚𝑜𝑙

= 3.0 · 10−5 
Normal 

1 9.00 · 10−10 4.6 

𝑢(𝑅)

𝑅
= 0  (𝑒𝑥𝑎𝑐𝑡 𝑣𝑎𝑙𝑢𝑒) --- 

- - - 

𝑢(𝑇𝑟𝑒𝑓)

𝑇𝑟𝑒𝑓

=  
𝑢(𝑇0)

𝑇0

=  8.5 

· 10−5 

Normal 

1 7.225 · 10−9 37.0 

𝑢(𝑝𝑟𝑒𝑓)

𝑝𝑟𝑒𝑓

=  
𝑢(𝑝0)

𝑝0

= 3.1 · 10−5 
Normal 

1 9.61 · 10−10 4.9 

𝑢(𝑄𝑉)

𝑄𝑉

= 1.40 · 10−4 

Table 7. Example of computation of the relative uncertainty of the gas flow at the MeGas primary standard. 

 



It can be observed that the main contributions to the overall uncertainty are the ones associated with the temperature 

measurement, as could be expected. It is also to be noticed that the other contributions, and in particular the two 

associated to volume measurement, have approximately the same magnitude. 

 

Q / L/min ΔV /L t / min 𝑢(𝑄𝑉)

𝑄𝑉
 / - 

100 100 1 1.40 · 10-4 

50 50 1 1.41 · 10-4 

10 10 1 1.78 · 10-4 

1 1 1 1.11 · 10-3 

1 50 50 1.40 · 10-4 

Table 8. Computation of the relative uncertainty of the gas flow at the MeGas primary standard for five 

representative cases, at the same  condition of Table 7 

It can be observed that, as the delivered volume decreases, the uncertainty associated with the flow rate increases, and 

quite dramatically for very low volumes. This is the reason why MeGas procedures prescribe a minimum delivered 

volume of 50 L for measurements. It can be noticed by comparing the second and the last row that also the 

measurement time has an influence, but similar computations show that this effect is very small for measurement 

times larger than one minute, which is why MeGas procedures also prescribe a minimum measurement time of 60 s. 

The results discussed in the present article will be of course validated through appropriate International Comparisons; 

one of these comparisons is currently underway, and INRIM already performed its set of measurements, although 

results are not yet available.  

6. Conclusions 

This paper presents a complete analysis of the measurement capabilities of the MeGas gas flow standard including 

uncertainty. Its features, traceability chain and the uncertainty budget of the measurements it can perform have been 

described in detail. Special attention has been dedicated to the dimensional calibration of the piston diameter and 

displacement. The values obtained from this calibration are in good agreement with the one that was carried out at the 

piston initial installation in 1999, thus confirming the stability of the standard. This work supports the uncertainties 

claimed by INRIM but, above all, provides a useful guide for a study of the uncertainty associated with a general 



piston proper gas flow standard. International comparisons are certainly a fundamental exercise for confirming or not 

the measurement capabilities of a standard, but in the event that the comparison has not been concluded successfully, 

the results of comparison do not provide a certain indication of what the error may be in assessing the uncertainty of 

the sample compared. Providing the uncertainty budget details of a primary gas flow standard can therefore be a valid 

tool to allow a theoretical comparison of standard as well. 
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