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Abstract: Due to the large variety of possible clinical scenarios, a reliable heating-risk assessment
is not straightforward when patients with arthroplasty undergo MRI scans. This paper proposes
a simple procedure to estimate the thermal effects induced in patients with hip, knee, or shoulder
arthroplasty during MRI exams. The most representative clinical scenarios were identified by
a preliminary frequency analysis, based on clinical service databases, collecting MRI exams of
11,658 implant carrier patients. The thermal effects produced by radiofrequency and switching
gradient fields were investigated through 588 numerical simulations performed on an ASTM-like
phantom, considering four prostheses, two static field values, seven MR sequences, and seven regions
of imaging. The risk assessment was inspired by standards for radiofrequency fields and by scientific
studies for gradient fields. Three risk tiers were defined for the radiofrequency, in terms of whole-
body and local SAR averages, and for GC fields, in terms of temperature elevation. Only 50 out of
588 scenarios require some caution to be managed. Results showed that the whole-body SAR is not a
self-reliant safety parameter for patients with metallic implants. The proposed numerical procedure
can be easily extended to any other scenario, including the use of detailed anatomical models.

Keywords: MRI heating risk; MRI safety; orthopaedic implants; radiofrequency-induced heating;
gradient-induced heating

1. Introduction

The growing number of implanted orthopaedic devices [1–3] has increased the need
of MRI exams for patients carrying a metallic implant. The heating produced by MRI
radiofrequency (RF) fields and, to a lesser extent, by gradient coil (GC) fields is a source of
risk for passive non-magnetic metallic prostheses not fully regulated by the current safety
standards [4–7]. Even if some clinical studies seem to downplay this problem by reporting
the absence of patient discomfort or adverse events [8,9], the MRI scan of patients with
arthroplasty should require some caution [10], according to the regulations in force. In
this framework, several papers are addressed to verify the thermal safety of implantable
devices in terms of specific absorption rate (SAR) and temperature increase [11–16].

Clinical MRI scanners rely on the whole-body averaged SAR or B1
+ root mean square

to limit the temperature increase in patients without metallic implants. Specific actions can
be adopted for patients carrying “MR Conditional”-labelled implants to meet the implant
specifications provided by manufacturers [10]. These labels [17] rely on standardized tests
where the temperature rise is measured on the device positioned in a phantom and radiated
by a defined electromagnetic RF field [6]. Such tests consider only a limited number of
conditions, not always reflecting realistic clinical scenarios [11,12]. Furthermore, current
tests are usually focused only on the RF field contribution, thus disregarding the thermal
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effects produced by the GCs, which are potentially non-negligible in bulky conductive
prostheses [13]. Thus, currently, the clinical decision about the exam execution on patients
with orthopaedic implants is taken on the basis of scientific literature, online available
information [18–20], and personal professional experience.

This work proposes a general approach, made available on a public repository [21],
to the assessment of the heating risk associated with MRI exams on patients with hip,
knee, or shoulder arthroplasty. The analysis was performed through virtual experiments
applied to a phantom similar to the one suggested by the American Society for Testing and
Materials (ASTM), but the procedure holds for any setup, including detailed anatomical
human models. The heating risk was evaluated in 588 clinical scenarios suggested by a
frequency analysis of MRI exams on prosthetic patients. The results showed that less than
10% of the clinical scenarios should require some caution.

2. Materials and Methods
2.1. In Silico Evaluation of Heating Effects during the MRI Scans

In prosthetic patients, the heating induced by both the RF and GC magnetic fields
is regulated by the Faraday’s law of induction. However, it occurs in complementary
ways [14,22]. The RF energy is directly deposited inside the biological tissues. The metallic
prosthesis modifies the RF field distribution, giving rise to possible hot-spots in proximity
of the implant. The strongest thermal effects occur when the prosthesis is within the
footprint of the RF antenna and when the implant’s longitudinal dimension is comparable
to half wavelength [23].

The GC fields generate significant Joule losses only inside the metallic parts of the
prosthesis. The induced heat then diffuses in the surrounding tissues. The highest heating
is found when the implant experiences higher GC fields amplitudes, namely relatively far
from the imaging region [24].

Specific numerical procedures were applied separately for the virtual RF and GC exper-
iments [22]. In line with the International Electrotechnical Commission (IEC) standards [4],
the assessment of RF-induced heating was conducted using SAR averages as a stress index.
Differently, GC-induced heating was assessed looking at the temperature increase.

In the following, the term configuration identifies the coils, the subject and region of
imaging, and the prosthetic implant. A scenario associates a given MR pulse sequence to
a given configuration, identifying the specific case for which the heating risk assessment
was desired.

2.2. RF Model

The procedure below applies to a generic single channel transmit RF coil, where the
SAR deposited by the RF coil depends linearly on the incident power. Given a configuration
C and a generic spatial coordinate x, the spatial distributions of the transmit sensitivity,
B̂+

1,C(x), and the SAR, ˆSARC(x), were computed in nominal conditions (i.e., a defined
power incident to the RF coil).

A scaling factor βC was applied to B̂+
1,C(x) to obtain a flip-angle α90◦ = 90◦ after

an RF hard pulse of length ∆t = 1 ms. The flip-angle α90◦ was assumed to be reached
when the free induction decay signal received by an ideal RF coil was maximised. Ac-
cording to this last condition, the proper value of βC was obtained solving the following
maximisation problem:

max
βC

∣∣∣∣∫V
sin
(

βC

∣∣∣B̂+
1,C(x)

∣∣∣γ∆t
)

eiϕ̂+
C (x)dv

∣∣∣∣ (1)

where ϕ̂+
C represented the phase of the transmit sensitivity, γ was the gyromagnetic ratio,

and the integral was extended to a volume V denoting a central slab of the domain.
A given MR pulse sequence, S, was characterised by NS RF pulses in each repetition

time (TR) of duration TRS. The i-th RF pulse in the TR was characterised by its duration
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TS,i and by the expected flip-angle αS,i. The SAR distribution in configuration C associated
with the i-th RF pulse was

SARC,S,i(x) = rS,i

(
αS,i

α90◦

∆t
TS,i

)2
β2

C
ˆSARC(x)

The coefficient rS,i accounted for the actual profile of the RF pulse modulation and
was computed as the ratio between the energies associated with the modulated and hard
RF pulses.

The SAR averaged over the TR was defined as

SARC,S(x) =
1

TRS

NS

∑
i=1

SARC,S,i(x)TS,i =
1

TRS

NS

∑
i=1

rS,i

TS,i

(
αS,i

α90◦
∆t
)2

︸ ︷︷ ︸
ψS

β2
C

ˆSARC(x)︸ ︷︷ ︸
ξC(x)

= ψSξC(x)

Thus, the SAR distribution produced in configuration C by sequence S was given as
the product of a “sequence RF stress index” ψS, whose value depended only on S, and a
“configuration index” ξC(x), depending only on C and fully encoding the effect of different
anatomies on SAR.

The spatial averages of SAR (over 10 g or the whole body) were deduced by simply
averaging ξC(x). The IEC 60601-2-33 provided SAR limits over 6 min (TIEC) of exposure.
When the sequence duration TS was lower than TIEC, the TIEC temporal average was
computed as

SARTIEC
C,S (x) =

TS
TIEC

ψSξC(x) (2)

Limits were provided also for the average over 10 s. Most of the time, such a temporal
window is shorter than the total sequence duration and longer than its TR. In this case,
the 10 s temporal average was well approximated by the average on a TR, SARC,S(x). The
distributions B̂+

1,C(x) and ˆSARC(x) were computed with Sim4Life (Zurich Med Tech AG,
Zurich, Switzerland) [25], assuming the perfect electric conductor approximation for the
metallic components. A 50 mm thickness of the central slab, over which (1) was integrated,
was chosen.

2.3. GC Model

The three GC coils represent a three-channel device. The time behaviour of the
total gradient magnetic field was determined by the superposition of the gradient fields
generated by each coil. For this reason, the deposited power cannot be related with the
pulse sequence features in a way as simple as that proposed for the RF. However, the same
Q matrix formalism [26], largely deployed with RF Multichannel Transmit Systems (pTx),
can be extended to GC, leading to a rather simple relation between the power deposited
inside an implant and each gradient coil signal.

Neglecting the skin effect within the metallic object [27] (i.e., adopting a conservative
approximation), the current density vector J(x, f ) induced in a spatial point x inside the
analysed implant at the frequency f was expressed as

J(x, f ) = f
3

∑
k=1

Jk(x)Gk( f )

where k identified the supplied gradient coil. Gk( f ) (expressed in Tesla per meter) was
the complex harmonic contribution of the k-th coil at the frequency f and depended on
the pulse sequence waveform. Jk(x) was the current density vector induced in x at unit
frequency (1 Hz) when the k-th gradient coil was supplied to generate a nominal gradient
field with unit amplitude (1 T/m).
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The square amplitude of J(x, f ) was expressed as

|J(x, f )|2 = J(x, f )HJ(x, f ) = f 2
3

∑
w=1

Gw( f )HJw(x)H
3

∑
k=1

Jk(x)Gk( f )

where H denoted the transpose conjugate. In matrix notation:

|J(x, f )|2 = f 2G( f )HQG( f )

where G( f ) was a three-element vector whose k-th element was equal to Gk( f ), and Q was
a 3 × 3 Hermitian matrix whose m,n entry was given by Jm(x)HJn(x).

The power density, p(x), in point x was

p(x) = ∑
f
|J(x, f )|2 =

1
2σ(x) ∑

f
f 2G( f )HQG( f )

where σ(x) was the electric conductivity in x. Finally, the power density averaged inside
the implant volume VP was evaluated as

p =
1

VP

∫
VP

p(x)dv =
1

2σ ∑
f

f 2G( f )H 1
VP

∫
VP

QdvG( f ) =
1

2σ ∑
f

f 2G( f )HQVG( f )

This expression represented a quadratic form analogous to that generally involved
in pTx SAR computations at RF [26]. Here, the averaged power density p was given by a
sum of terms including a contribution related to the pulse sequence, G( f ), and another
dependent on the configuration (i.e., gradient coil, region of imaging and implant), QV .

The following computational procedure allowed us to minimize the number of simu-
lations required. For a given implant, three electromagnetic simulations, performed with a
validated homemade finite element solver [24], provided the current density distribution
inside the implant, Ĵi(x), induced at 1 Hz by a 1-T spatially uniform magnetic flux density
directed along the i-th Cartesian axis. Denoted by Bk,i the i-th component of the magnetic
flux density generated by the k-th GC in the implant barycentre, the actual distribution
Jk(x) was:

Jk(x) =
3

∑
i=1

Bk,i Ĵi(x)

The thermal problem was developed assuming a power density uniformly deposed
inside the implant equal to 1 W/m3. This allowed performing a single thermal simulation
for each implant, thus potentially extending the results to any scenario through a scaling
factor. The computations were carried out in a domain including the implant and a suitable
portion of media around it. The time evolution of the induced temperature increase ϑ̂(x, t)
was evaluated by solving the Pennes bioheat equation with a validated homemade code [28].
The time behaviour of the temperature increase produced in the domain by any sequence
was then deduced from this single solution ϑ̂(x, t), simply rescaling it by the average power
density p coming from the electromagnetic problem: ϑ(x, t) = pϑ̂(x, t).

A duty-cycle coefficient applied to the total power accounted for possible idle times
within the sequence. For MR pulse sequences whose gradients vary during successive TR,
the highest gradient intensity was kept in all TRs. This assumption simplified the harmonic
content of the sequence leading to conservative results. The maximum temperature increase
at the end of the sequence, ϑ, and at steady state, ϑ∞, were used as GC stress metrics.

2.4. Frequency Analysis

A frequency analysis of MRI exams on patients carrying a hip, a knee, or a shoulder
prosthesis was performed. Data were extracted from the Register of the Orthopaedic Pros-
thetic Implants (Registro degli Impianti Protesici Ortopedici, RIPO) [29], which collected
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data from 70 Orthopaedic Units integrated in the Italian National Health Service (Servizio
Sanitario Nazionale, SSN) of Emilia-Romagna, an administrative region of Northeast Italy,
with about 4.4 million inhabitants.

Collected data were cross-referenced with those recorded by two additional Ital-
ian regional healthcare system databases, Outpatient Specialist Assistance (Assistenza
Specialistica Ambulatoriale, ASA) [30] and Hospital Discharge Form (Scheda di Dimis-
sione Ospedaliera, SDO) [31]. All MRI exams in ASA and SDO were associated with
an anonymized patient identifier. Features of RIPO, ASA, and SDO from June 2018 are
presented in Supplementary Tables S1 and S2.

RIPO data for 2013 (i.e., patients whose surgery was performed during 2013) were
matched with the ASA and SDO, including only the patients subjected to at least one MRI
scan in the following three years. The MR exam prescription code provided information
about the region of MRI, without details about exam protocols or diagnostic questions. The
analysis was limited to patients carrying only one kind of implant.

2.5. Scenario Selection

A homogeneous parallelepiped phantom (440 mm × 178 mm × 1190 mm), filled with
the gel (electrical conductivity: 0.47 S/m, relative electric permittivity: 80) and prescribed
by ASTM for measurement of induced heating [6], was used as the subject of imaging. The
height of the phantom was enlarged with respect to the ASTM suggestions, so that the
phantom could be kept centred within the scanner while moving the implant to reproduce
different imaging-region conditions.

Four implant models, detailed in Figure 1, were analysed: one knee, one shoulder,
and two hip models (denoted as A and B) with different sizes. The shoulder, knee and hip
B implant models were provided by the relevant manufacturer. The model of the hip A
implant was obtained through 3D scanning. In order to produce conservative results, all
the metallic components were simulated as a CoCrMo alloy. Indeed, such an alloy produces
higher temperature increases than those generated in titanium-based alloys (e.g., about
140% when a total hip implant is involved [24]) when exposed to the GC excitation. The
implants were positioned within the phantom complying with the realistic location and
orientation inside a human body. The longitudinal position was chosen consistently with
the seven selected imaging regions shown in Figure 2.
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The RF coil was a 16-leg shielded birdcage body coil (diameter: 713 mm, height:
450 mm), operating as a low-pass coil tuned to 64 MHz for the analysis at 1.5 T and as a
high-pass coil tuned to 128 MHz for the analysis at 3 T. In both cases, the coil was supplied
in quadrature operation mode. An apodised sinc modulation was assumed for all the RF
pulse excitations.

For both 1.5 T and 3 T systems, traditional GCs for cylindrical bore scanners, arranged
on a cylinder of radius 33.5 cm and height 150 cm, were used. The selected MRI pulse
sequences (T2 FRFSE, T1 FSE, T2* GRE, 3D FSPGR, DWI SE-EPI, PERF GRE-EPI, and
TrueFISP), which belong to four of the most common sequence families (spin echo (SE),
gradient Echo (GRE), echo planar imaging (EPI), and balanced steady-state gradient echo
(TrueFISP)), are presented in Table 1. Since all the examined sequences had a duration
shorter than 6 min, the relation (2) was applied. Furthermore, the TR-averaged SAR can be
considered representative of the 10 s averaged SAR, because all sequences had a duration
considerably longer than 10 s and a TR far below 10 s.

Table 1. Parameters relevant to the analysed MRI pulse sequences.

T2 FRFSE T1 FSE T2* GRE 3D FSPGR DWI SE-EPI PERF
GRE-EPI TrueFISP

Flip angle (◦) 90 90 20 12 90 90 45
B1

+ rms (µT) 1.27 1.74 0.44 0.36 0.02 0.02 2.05
TE (ms) 68 Min (13.2) 15 6 Min (115.2) Min (50.8) 3.2
TR (ms) 3160 840 500 14.6 5625 1500 6.4
FOV (mm2) 300 × 300 300 × 300 300 × 300 300 × 300 300 × 300 300 × 300 120 × 180
Slice thickness
(mm) 5 5 5 1 5 5 4

Matrix 256 × 256 256 × 256 256 × 256 256 × 128 128 × 128 128 × 128 256 × 256
Readout BW
(kHz) 20.83 31.25 15.63 27.78 250 250 126.3

Specific
parameters Echo train = 16 Echo train = 4 - Slab thickness = 180 mm 3 directions,

b = 500 s/mm2 - -

Duration (min:s) 03:20 03:35 03:12 05:36 04:00 03:00 02:10
ψS 4.7 × 10−2 8.8 × 10−2 5.5 × 10−3 3.8 × 10−3 1.3 × 10−5 1.6 × 10−5 1.2 × 10−1
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Since, in the EPI sequences, the prevailing GC heating effects are due to the frequency
encoding signal [28], the x-, y-, z-directions were explored. In total, 84 configurations (56 for
RF and 28 for GC) were identified and associated with the seven MR pulse sequences
previously indicated, leading to 588 investigated scenarios.

2.6. Heating Risk Classification

Three risk tiers were defined separately for the RF and GC fields, starting from the
safety criteria in IEC 60601-2-33 [4]. For RF heating, the SAR limits prescribed by IEC were
adopted. To account for the RF field perturbations produced by the implant, the limits
relevant to local transmit coils were assumed, although a whole-body volume coil was
deployed in the simulations. The IEC limits involve the whole-body SAR (SARwb) and the
maximum 10 g SAR (SAR10g) with the following conditions

SARTIEC
wb,C,S ≤ K1

SARwb,C,S ≤ 2K1

SARTIEC
10g,C,S ≤ K2

SAR10g,C,S ≤ 2K2

,

where K1 = 2 W/kg and K2 = 10 W/kg for the hip and the shoulder implants applied. For
the knee implant, the threshold K2 was doubled (20 W/kg).

An attention situation (risk tier 3) was associated with the scenarios exceeding at least
one limit. A warning situation (risk tier 2) was associated with the cases where no previous
limit was exceeded, but

SARwb,C,S > K1 or SAR10g,C,S > K2,

namely, when a repetition or extension of the sequence might give rise to a risk tier 3. Finally,
a safe situation (risk tier 1) was associated with all the other scenarios.

For GC heating, the limits were expressed in terms of temperature increase and were
assumed to be 2 ◦C for the shoulder and hip implants, and 3 ◦C for the knee implants. These
values originated from the 39 ◦C maximum local tissue temperature IEC limit4, assuming
a 37 ◦C normal temperature in the trunk (including hip and shoulder) and 36 ◦C in the
limbs (including the knee). Risk tier 3 was associated with the scenarios in which ϑ was
above the threshold. Risk tier 2 was associated with the scenarios in which ϑ was below the
threshold, but ϑ∞ overcame it. Finally, risk tier 1 was associated with all other scenarios.

3. Results
3.1. Frequency Analysis

From the accounted database, 11,658 patients (34.3% males with an average age of
69.9 years, standard deviation of 11.5 years, range 17–101 years, and 65.7% females with an
average age of 73.6 years, standard deviation of 10.4 years, range 13–104 years) underwent
the surgery in 2013; 20.5% of them (34% males and 66% females) underwent at least one
MR scan within three years from the time of surgery. Table 2 shows details on the type of
prosthesis and categories of exams.

Head, spine, and musculoskeletal exams comprised over 90% of the MRI exams for all
the patients carrying the three types of prostheses. The musculoskeletal exams included
prosthesis-related studies, but also investigations on the other musculoskeletal joints. The
spine exam categories ranged from cervical to lumbar regions.
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Table 2. Types of MRI exams performed within three years following the surgery for the patients
with hip, knee, or shoulder prostheses implanted in 2013.

Prosthesis

Hip Knee Shoulder All Three Prostheses

MRI Exam Number of
Exams

% of MRI
Exams

Number of
Exams

% of MRI
Exams

Number of
Exams

% of MRI
Exams

Number
of Exams

% of MRI
Exams

head 390 19.8% 361 19.4% 26 16.5% 777 19.5%
chest 34 1.7% 25 1.3% 3 1.9% 62 1.6%
spine 749 38.0% 716 38.5% 51 32.3% 1516 38.0%
musculoskeletal 641 32.6% 607 32.7% 68 43.0% 1316 33.0%
abdomen/pelvis 125 6.3% 119 6.4% 9 5.7% 253 6.3%
other 30 1.5% 31 1.7% 1 0.6% 62 1.6%
total 1969 100.0% 1859 100.0% 158 100.0% 3986 100.0%

3.2. RF Heating

A non-uniform Cartesian mesh, with a size equal to 1 mm in the implant and relaxed
elsewhere in the phantom, was adopted. A discrepancy in the maximum value of the
SAR10g of less than 5% was found when comparing the result with a 0.5 mm mesh. For hip
A, only a model discretized with 2 mm voxels was available.

The highest value of the whole-body configuration index ξwb,C, 6.13 W/kg, was
reached for the hip B implant when imaging the femur at 3 T. The maximum RF stress
index ψS of the selected MRI pulse sequences was 0.12, reached by the TrueFISP sequences.
Since the product between these maximum values was more than three times lower than
the limit K1, none of the investigated scenarios exceeded the RF whole-body SAR limits.
Therefore, only the results on the local SAR averages are discussed in the following.

The two limits involving the local SAR average were combined in the single expression

ξ10g,C ≤
min

(
2, TIEC

TS

)
K2

ψs
,

which determined a maximum value ξ∗10g,S of the local 10 g configuration index admissible
for a sequence S, characterised by a duration TS, and a RF stress index ψS. A map of ξ∗10g,S
as a function of TS and ψS is provided in Figure 3. When TS < TIEC/2, the value of ξ∗10g,S
depended only on ψS. The limits associated with the selected MRI pulse sequences are
denoted by red dots in Figure 3.

Figure 4 shows the value of ξ10g,C for all the configurations where the implant falls
within the RF coil. When the implant was positioned outside the RF coil, the values
ξ10g,C = 26.9 W/kg at 1.5 T and ξ10g,C = 51.8 W/kg at 3 T were independent of the type
of implant and similar to the case of the phantom without implant. The threshold values
ξ∗10g,S for the risk tier 3 are reported in Figure 4 as solid horizontal lines. Dashed horizontal
lines denote the threshold for the risk tier 2. In order to account for the higher limits with
the knee implant, the configuration index was halved for the knee implant in Figure 4. This
allows comparing all the ξ10g,C values with the reported thresholds. The risk tier 3 and tier
2 scenarios were collected in Figure 5.

Finally, the result of a sensitivity analysis of the SAR averages with respect to the RF
pulse length is reported in Figure 6. The RF pulse length affected almost linearly the power
deposition, with a variation of 30% in the SAR averages for a variation of 30% in the RF
pulse length. This analysis was independent of the selected sequence and was performed
keeping the time–bandwidth product of the pulse modulation constant.
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Figure 4. Configuration index ξ10g,C for the most stressed situations at 1.5 T (a) and 3 T (b). The
maximum values of this index (ξ10g,Max) admissible for condition (1) and (2) associated with the
TrueFISP, T1 FSE, and T2 FRFSE sequences are reported as solid lines (condition 1) and dotted lines
(condition 2). For compatibility reasons, the values of ξ10g,C for knee are fictitiously halved.
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3.3. GC Heating

The electromagnetic simulations used a uniform Cartesian mesh of 0.5 mm for all
implants except hip A (2 mm as in RF simulations). The thermal properties of the phantom
(thermal conductivity: 0.3 W/m/K, blood perfusion: 600 W/m3/K, density: 1000 kg/m3,
specific heat capacity: 2500 J/K/kg) were set similar to those of bone tissue.

In most of the considered scenarios, the heating due to the GC magnetic fields was
almost negligible. The risk tier 3 was not reached by any selected scenario. The occurrences
of risk tier 2 are presented in Figure 5. According to a worst-case approach, for EPI
pulse sequences, the highest GC-induced temperature increase, computed by setting the
frequency-encoding direction along each Cartesian axis, was assumed. This value is
reported in Figure 5, together with the frequency-encoding direction.

4. Discussion
4.1. Frequency Analysis and Selected Scenarios

The frequency analysis showed that most exams are carried out in the head, spine,
and musculoskeletal targets, with a similar frequency for the studied prostheses. In clinical
practice, the exams classified as ‘musculoskeletal’ are carried out for problems not solely
related to prostheses. Even ascribing all the musculoskeletal exams to prosthesis-related
studies, most MR exams were performed in regions not in proximity to the implant.
This suggests that MRI exams are often required for clinical questions not related to
the arthroplasty.

The results showed a wide variability in possible scenarios in daily clinical practice,
justifying the application of the risk analysis to all the combinations between prostheses
and imaging regions. In addition, in absence of standards for the definition of clinical MRI
protocols and without specific information about the clinical motivations of the exams, this
study was extended to a number of different MRI pulse sequences, whose parameters were
defined as representative of those commonly used for the most frequent clinical questions.

4.2. RF Heating

The RF stress index ψS showed a large range of variability (from 1.3 × 10−5 to
1.2 × 10−1), with the values for TrueFISP, T1 FSE, and T2 FRFSE sequences being higher
with respect to the other ones. Therefore, these sequences have the lowest threshold ξ∗10g,S,
being the only ones with a safety threshold comparable to the configuration index of the
selected configurations.

The configuration indexes at 3 T are generally higher than those at 1.5 T. The only
exception was the hip B implant for pelvis or femur-imaging regions, presumably because
of a particular combination of the implant size and the field wavelength [23]. In general,
the highest configuration indexes were found for the imaging region centred within the
RF coil. The shoulder prosthesis showed the highest configuration indexes, whereas the
smallest ones were obtained with the knee implant. By comparing this maximum value of
ξ10g,C (349 W/kg) with the RF stress indexes ψS of the selected sequences, the scenarios
involving the sequences T2* GRE, 3D FSPGR, DWI SE-EPI, and PERF GRE-EPI reached
values of SAR10g,C,S at least five times lower than the most severe limit for tier 2. Therefore,
all the scenarios involving these sequences exhibited risk tier 1 for the RF-induced heating.

Only 29 out of 392 RF scenarios did not belong to risk tier 1. In all these scenarios,
the whole-body SAR was within the safety range, thus potentially confirming that this
quantity cannot be considered a self-reliant parameter to assess the safety of patients with
metallic implants.

The sensitivity of the SAR averages with respect to the RF pulse length highlights that
the discussed results hold exclusively for the selected sequence parameters. Furthermore,
the linear dependence suggested how the RF-induced heating could be minimised by
tuning the sequence parameters.
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4.3. GC Heating

None of the 196 selected GC scenarios reached the risk tier 3. Only 21 scenarios with a
risk tier 2 were found when executing the PERF GRE-EPI or the TrueFISP sequences. With
these sequences, the tier 2 limit was surpassed in all the regions of imaging except for the
head, for the hip A implant and, in a more limited number of occurrences, for hip B. As for
RF, the knee implant always exhibited a risk tier 3. In some imaging areas, hip B produced
higher temperature increases than hip A when performing the PERF GRE-EPI sequence,
but for the TrueFISP sequence, the highest values were found in hip A. Such a result may
prove that the separation between configuration and sequence, found for RF, may no longer
apply for GC. Finally, the PERF GRE-EPI sequence, performed in imaging areas outside of
the head, may not correspond to realistic clinical situations; nevertheless, it could represent
a remarkable result from a conceptual point of view because the corresponding SAR values
for RF were below the prescribed limits.

4.4. Limitations

The frequency analysis focused only on the population of Emilia-Romagna. Such a
limitation is partially compensated by the fact that the RIPO data are fairly in line with the
European ones [32] and by the completeness of the data about the involved orthopaedic
implants (>95%).

In GC scenarios, magnetic flux density and deposed power were assumed to be
uniformly distributed inside the implant. Direct comparisons between experiments and
computations, performed under the same hypothesis, showed a discrepancy less than
10% in the temperature increase both after relatively short exposures (20 s) [33] and after
longer exposures (15 min) [34]. In addition, Wooldridge et al. [23] showed that the total
power deposed within a bulky orthopaedic implant correlated well with the temperature
increase already after 360 s, independently of the actual power distribution. Such a result
could make the assumption of uniform power reasonable for the ϑ∞ estimates. Greater
discrepancies could arise in the temperature increase after a shorter time interval (i.e., for
ϑ). However, in all the investigated cases, the length of the selected sequences was in the
order of some minutes and the ϑ values remained far below the stated limit, making the
conclusions reasonably acceptable.

The separate risk assessments for RF and GC fields disregarded their combined effects.
A recent study [22], specifically devoted to joint RF and GC heating in hip implants,
showed that the RF and GC thermal effects are maximized for different positions of the
implant in the scanner. Thus, the worst cases never coincide, and the maximum cumulative
temperature increase tends to be equal to the highest temperature increase between those
produced separately by the two sources. Moreover, RF fields usually create hot-spots
of SAR near sharpened parts of the implants (e.g., screws, tip of the stem), whereas the
coupling with the GC fields is highly relevant when the implant exhibits a large cross
section [23].

The use of an ASTM-like phantom opens the very sensitive problem about the relation
between in vitro and in vivo results [35]. Previous work showed that the RF heating of
the ASTM phantom is usually conservative with respect to the anatomical model, but
sometimes, it greatly underestimates the thermal effects [36]. For the GC frequencies,
Arduino et al. [34], analysing two anatomical models with hip, knee, and shoulder prosthe-
ses, found that a phantom with ASTM gel thermal properties always underestimated the
temperature increase with respect to the in vivo results. For this reason, the phantom was
filled with a medium having the thermal properties of the bone, including perfusion (which
plays an important role in steady-state thermal results) in order to try to better reproduce
the local conditions of the implant in the human body. However, the large variability in
the thermal effects (up to a factor 2) [37] between different phenotypes makes the reference
to in vivo results not unique. In this sense, the phantom seems to be the most general
reference, despite the fact that the associated results should be understood as indications.
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However, in many tier 1 scenarios, the large margin with respect to the stated safety limits
may make the evaluation reliable also in vivo.

The validity of the results presented is limited to the investigated scenarios, including
the shape and size of the studied implants, the design of the simulated RF coils, and the
parameters of the selected MRI pulse sequences. The risk classification could be extended
to further scenarios with new implants and pulse sequences, thanks to the availability of a
software tool used for processing the simulation results [21].

5. Conclusions

This work aimed to provide a better understanding of the heating risk in patients with
hip, knee, or shoulder arthroplasty undergoing MRI exams in realistic clinical conditions.
A numerical procedure was designed and applied to investigate a large number of clinical
scenarios. The results for the RF heating showed that the limits for the whole-body SAR
were never exceeded. The limits for the local SAR were exceeded in about 7.5% of the
investigated cases only, and the most severe situation (tier 3) was observed in about 3%
of the scenarios. The thermal effects produced by GC were found to be limited (tier
3 never occurred).
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