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ABSTRACT

Spectroscopic applications are characterized by the constant effort to combine high spectral resolution with large bandwidth. A trade-off
typically exists between these two aspects, but the recent development of super-resolved spectroscopy techniques is bringing new opportuni-
ties into this field. This is particularly relevant for all applications where compact and cost-effective instruments are needed such as in
sensing, quality control, environmental monitoring, or biometric authentication, to name a few. These unconventional approaches exploit
several strategies for spectral investigation, taking advantage of concepts such as sparse sampling, artificial intelligence, or post-processing
reconstruction algorithms. In this Perspective, we discuss the main strengths and weaknesses of these methods, tracing promising future
directions for their further development and widespread adoption.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0096519

I. INTRODUCTION

Several compact spectrometers are currently available on the
market that are based on traditional designs. Their reduced footprint
intrinsically limits their spectral resolution with typical spectral
responses ranging from few nanometers to �10 nanometers for the
smallest models. Significant progress has been made in the past years
in the field of integrated spectrometers with a few notable examples
leveraged on reconstructive spectroscopy1–4 through regularization
functions or compressed sensing.5–8 In most cases, however, com-
pressed sensing has been used to reduce the amount of data required
for a full spectral reconstruction without sacrificing the resolution,
rather than to enhance it or reveal finer spectral features beyond the
intrinsic resolution of the apparatus. Several excellent reviews and
Perspectives are already available in the literature for the interested
reader, discussing original approaches to spectroscopy, spectral recon-
struction strategies, and high resolution spectrometers.9–12

In this Perspective, our main focus is on “super-resolution” spec-
troscopy techniques that allow us to reach a spectral resolution that is
beyond that expected for a given system based, e.g., on its footprint,
dispersion, decorrelation, or detection properties. The observed resolu-
tion enhancement is typically achieved by either exploiting the optical

properties of a light source in some unconventional ways or through
post-processing reconstruction algorithms or both. We will look with
particular interest at strategies based on statistics and disorder.

II. RECONSTRUCTIVE SPECTROSCOPY
A. Speckled pattern-based spectroscopy

The interference of multiply scattered laser light by a disor-
dered medium results in a speckled pattern, which is highly sensi-
tive to the wavelength of the incident radiation in most situations.
In this respect, speckle-based spectroscopy applications are distinct
from all other approaches in that they translate the spectral recon-
struction problem into a different domain, namely, that of pattern
recognition. In recent years, this strategy inspired several applica-
tions targeted at the realization of low-cost, alignment-free, on-
chip wavemeters and spectrometers.13–15 Random media used for
speckle spectroscopy include single16 or multimode fibers,17 spiral
waveguides,18 integrating spheres,19 and photonic amorphous
structures up to pieces of mother-of-pearl.20

In this paper, we introduce briefly the working principle of
speckle-based spectroscopy and then discuss the latest developments
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aimed at further enhancing the resolution beyond that associated with
the typical frequency decorrelation of speckle patterns.

Without loss of generality, let us consider as an example a speckle
spectrometer based on a multimode optical fiber (MMF). Just as in
common disordered systems, light propagating through a MMF is
scrambled into multiple modes that interfere with each other along the
fiber length, resulting in a fully developed speckle pattern at the end,
whose spatial modulations are eventually recorded by a multi-pixel
detector. For each input wavelength, a unique and distinct speckle
pattern is obtained, providing a deterministic mapping between input
frequencies and a spatial intensity pattern “fingerprint” at the fiber
output [see Fig. 1(a)].

For this reason, using a speckle-based spectrometer requires
an a priori calibration step where a tunable laser source is used to
feed known wavelengths into the optical system and reconstruct
the transmission matrix T that relates the spectral components to
the pixel intensities at the detector D. The calibration laser source
is, thus, scanned over k1;…; kN wavelength steps, and the intensity
level of 1;…;M pixels are recorded at each stage. This results in a
M � N T-matrix, where the i-th column contains all the intensities
measured at ki:

D x1;…; xMð Þ ¼ T k; xð ÞS k1;…; kNð Þ:

After this necessary calibration step, a generic spectrum S can be, in
principle, reconstructed from the measured D-matrix and by inverting
the T matrix: S ¼ T�1D. In practice, however, this simple inversion
is numerically unstable in the presence of noise and is, therefore,
combined with a non-linear optimization process seeking a response S
that minimizes the euclidean L2 norm kD� TSkL2. Following this
approach, the minimum measurable wavelength shift Dk corresponds
to the FWHM of the spectral correlation function of speckle intensity

CðdkÞ for input light k: C dk; xð Þ ¼ hDðk;xÞDðkþdk;xÞi
hD k;xð ÞihDðkþdk;xÞi � 1, where the

averaging operation is performed for each pixel x at all wavelengths.
The number of distinguishable spectral channels is related to the

number of modes supported by the fiber with a resolution of the order
of 1 pm at 1500nm being achievable using a 100 m step-index MMF
optical fiber.21 The resolving power and bandwidth scale linearly with
fiber length and the number of supported modes, respectively.
Speckle-based spectrometers do not have fixed free spectral ranges—
their working bandwidth is determined by the range over which the
calibration is performed—unlike more conventional spectrometers
that can tune their bandwidth by rotating the dispersive element that,
in this case, cannot be rotated.

The main breakthrough of these devices lies in the fact that mul-
tiple scattering from a small size randommedium can reach high spec-
tral sensitivities: a resolution of 0.6 nm over a bandwidth of 25 nm was
demonstrated for an integrated random photonic structure large only
a few tens of micrometers,22 a result which would be impossible to
obtain using a traditional dispersive micro-spectrometer design.

The main drawbacks of speckle-based spectrometers are repre-
sented by the need of tunable laser sources for their calibration, and
the fact that their resolving power grows with increasing optical path
length, which in turn makes the whole system particularly sensitive to
environmental fluctuations, vibrations, and temperature changes. This
poses a practical limit to the stability of these devices, which require
frequent recalibrations to make sure that the observed intensity pat-
tern fluctuations are due to the frequency content of the input signal
rather than external factors. Similarly, the polarization and spatial in-
coupling of the input signal into the speckle-generating system must
remain as stable as possible, e.g., by using first a polarization-
maintaining single-mode fiber, which, however, limits the available
signal.

Conceptually, this approach requires some basic a priori knowl-
edge of the measured signal, as this defines the range over which the
calibration laser must be scanned to perform the required characteri-
zation of the transfer matrix of the system. The final performance of
this class of devices is eventually largely determined by the quality of
the reconstruction algorithms implemented in the post-processing

FIG. 1. Comparison of different spectral super-resolved reconstruction techniques.
(a) Speckle-spectroscopy relies on a spatial-to-spectral mapping for the characteri-
zation of coherent light sources. It uses a tunable laser for calibration, a mode-
scrambling device (such as a scattering medium or a multi-mode fiber), and a
matrix detector. Input light is fed into the scattering system via a polarization-
maintaining single mode fiber (SMF) for stability. Principal component analysis
(PCA) is then used to extract spectral information below the speckle decorrelation
limit C(k). (b) Filter-array reconstruction spectroscopy is used to characterize arbi-
trary light sources based on the transmittance through a set of random transmit-
tance filters, which have been previously resolved with high resolution. Provided
that the filter responses are highly uncorrelated in the spectral domain, illuminating
them allows us to achieve a resolution, which is larger than that obtained with a
comparable array of bandpass filters. (c) The STORS technique is used to charac-
terize a transfer function exploiting random laser illumination, using a low-resolution
dispersive element and a matrix detector. Collecting the response to enough narrow
and sparse excitation peaks allows reconstructing the unknown spectrum overcom-
ing the resolution limit of the dispersive element. A reference beam is used to com-
pensate for intensity fluctuations.
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step. Significant improvements have been recently demonstrated
thanks to the introduction of well-established compressed sensing
approaches, principal component analysis (PCA), or machine learn-
ing, which are particularly apt to the pattern recognition tasks associ-
ated with this technique.

In the context of speckle-based spectroscopy, assuming a certain
optical path length, the super-resolution barrier is represented by the
inherent decorrelation of the speckle patterns with frequency. A
broadband enhancement of the spectral resolution can be achieved by
favoring evanescent coupling between different windings of spiraled
waveguide coils, as an additional mechanism to further scramble the
propagating modes together.18 Even more remarkably, in a recent
demonstration by Bruce et al., the speckle correlation limit was over-
come by eight orders of magnitude down to the attometer scale23 by
resorting to a PCA decomposition, which proved to be an optimal
basis on which to measure speckle modulations. First, a training set of
normalized speckles in the spectral range of interest is used to build
the covariance matrix, whose principal components represent the basis
of the dataset on which the measured speckle of the unknown spec-
trum is projected. To obtain a sufficiently large spectral range, the
technique needs to be integrated with the transmission matrix method.
Even more interesting perhaps is the fact that in the PCA, basis differ-
ent components seem to be linked to the characteristic variations asso-
ciated with different environmental factors such as temperature or
external variations, which allows for potentially interesting speckle-
based multi-sensing applications. Moreover, this allows it to decouple
to some extent the resolution from the fiber length. Indeed, it has been
observed that by extending the fiber over 50 m, the resolution obtained
with PCA reconstruction remains constant, allowing the use of shorter
fibers, less sensitive to external parameters.

The combined use of PCA and transmission-matrix characteriza-
tion is also the core of the wave-meter implemented by Metzger
et al.,19 which allows achieving sub-femtometer resolution over a
broad bandwidth spanning over the visible and near infrared range. In
their proof of concept, light is injected through a single mode-fiber
into an integrating sphere. A CMOS camera records the speckle pro-
duced by the interference of the scattered waves inside the sphere. As
an application, the authors demonstrate the stabilization of a narrow
laser line with relevant applications in metrology and atomic interfero-
metric measurements. Similar applications can be envisioned for the
spectrometer demonstrated in the work of Coluccelli et al.,24 consist-
ing of a multi-mode fiber and a camera for speckle acquisition. The
system is coupled to an optical frequency comb light source and can
be used for high-resolution spectroscopy experiments, also thanks to
the careful thermal and mechanical insulation measures that have
been adopted that increase stability, robustness, and compactness of
the device.

Even in their super-resolved version, one advantage of speckle
spectrometry applications is their measurement speed. By using a fast
camera, the exposure time can be reduced to microseconds enabling
an acquisition rate into the tens of kHz.23 For laser line stabilization
applications, as reported in Ref. 19, the update rate of the control loop
using PCA to detect speckle variation is limited to 200Hz. However,
the actual measurement duration should account also for the time
spent during the repeated frequency calibration step, which requires a
full frequency sweep over the spectral range of interest using a tunable
laser, and the corresponding acquisition time to collect a set of speckle

pattern images for each frequency. This wavelength calibration must
typically be performed at regular intervals every few minutes to com-
pensate for environmental fluctuations and drifts in order to avoid
systematic errors in the frequency identification or artifacts in the
spectral response of the instrument.

Coupling a trained deep learning model with speckle spectrome-
try holds promise to improve the precision of laser line stabilization by
rejecting more efficiently the environmental and instrumental
noise,25,26 while only one example has been reported to date on the
use of neural networks to actually improve the resolution of the state-
of-the-art PCA approach, as well as the spectral bandwidth.27

B. Super-resolved spectroscopy based on optimization
algorithms

Compressed sensing is a very broad processing technique used to
reconstruct a signal through a limited number of measurements. It
relies on the assumption that the target signal has a sparse representa-
tion in some predetermined domains (e.g., in terms of its Fourier or its
wavelet components), i.e., that it can be represented with high fidelity
by combining only a few elements with non-zero amplitude taken
from a suitable basis. When this is the case, a most likely signal shape
can be guessed numerically based on a limited set of measurements
even below the Nyquist sampling theorem.

Whenever a signal is sparse under some representation, then its
information content can be compressed. Typical examples include nat-
ural images, vector fields, and audio signals for which several compres-
sion schemes have been developed. On the contrary, typically
incompressible signals include TV static, uncorrelated (white) noise,
or signals that are already compressed. Exploiting the sparse represent-
ability of a signal, it is often possible to perform just a small fraction of
random measurements to infer what combination of few non-zero ele-
ments in the sparse representation are consistent with the measure-
ments and, hence, with the complete dataset. Recently, compressed
sensing has been applied to spectroscopy showing promising results.
The basic idea is to measure a spectrum with a reduced number of
measurements and to retrieve it from the compressed measurements
using reconstruction algorithms. Some examples are based on etalon
arrays, Fabry–P�erot resonators, 2D-thin film filters, and nanophotonic
structures.8,20,28–30 In mathematical terms, the measurement column
vector y with L components is represented using the relation

y ¼ Mx; (1)

where x is a column vector of N components representing the spec-
trum of the illumination source and M is the sensing matrix of the
optical structure (e.g., a matrix of transmittance filters, where each row
represents a transmission spectrum). Because the length of the mea-
surement vector is smaller than the length of the spectrum vector
(L < N), the system is inevitably underdetermined with infinite possi-
ble solutions. In the transformed domain (transformation matrix P), y
and, therefore, x can be represented as sparse vectors, x ¼ Pa, where a
is the transformed vector with few non-zero components in the trans-
formation domain, from which it follows that

y ¼ MPa: (2)

In the works of Donoho and C�andes,31,32 it is shown that for most
underdetermined systems, the sparsest solution a compatible with y
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can be recovered by solving a convex optimization problem, namely,
by finding the solution that minimizes the L1 norm of the vector a.
Then by finding the sparsest a vector components that minimize the
L1 norm and verify Eq. (2), it is possible to retrieve the complete data-
set of y. A second necessary requirement is that matrix M needs to be
composed of uncorrelated and random measurements with respect to
the transformation basis to obtain an incoherent sampling covering a
broad range in the transform domain (e.g., a periodic sampling in
direct space corresponds in the Fourier-transform domain only to
sense a single frequency).

We should stress that the concept of sparsity can be used with
different meanings, depending on the application. In compressed sens-
ing, sparsity is a purely mathematical concept implying that most ele-
ments of a vector in the transformed basis are zero. This property is
only connected to the possibility of compressing a physical signal, not
of increasing its resolution. If anything, compressed sensing leads to a
partial loss of information and, therefore, of resolution, while on the
other hand, it helps reduce a signal’s complexity and memory
footprint.

In the more general field of digital signal processing, a comple-
mentary approach to compressed sensing is used to achieve spectral
super-resolution reconstruction by solving an under-determined sys-
tem of equations instead of using compression. This kind of recon-
structive spectroscopy is based on filter arrays and is very performant
in terms of scalability and high spectral resolution. Moreover, due to
its deterministic nature, robustness against perturbations, and one-
time calibration requirement, filter-array spectroscopy represents one
of the fastest methods for spectral reconstruction. In the early imple-
mentations of these techniques, non-negative least squares algorithms
were used to estimate and restore the target spectrum using low-
quality and low-cost filter arrays.33

A resolution improvement based on these principles has been
demonstrated by Oliver et al.34,35 In this case, the spectral recon-
struction is achieved by projecting the target spectrum onto a ran-
dom basis of M non-ideal broadband spectral filters. Using a
regularization algorithm, a highly resolved spectral signal is recon-
structed based on the assumption the signal was sparse in the
observation domain. As in compressed sensing, the number of M
filters can be reduced significantly, even though, in this case, the
super-resolution effect can only be obtained via an oversampling
of the unknown spectrum in contrast with the typical scope of
compressed sensing approaches [see Fig. 1(b)].

When discussing super-resolved reconstructive spectroscopy, a
mandatory mention is in order for hyperspectral imaging applications.
This field, which deals with spectral augmentation strategies for
images, shares some affine traits with multi-filter array reconstruction.
A typical example is that of predicting the hyperspectral content of an
image starting from a single RGB shot,36 which is analogous to a
(multi-pixel) reconstruction of a three-filter array (the RGB channels)
into a few tens of output channels distributed across the visible spec-
trum. Considerable research efforts have been devoted to the develop-
ment of spectral super-resolution strategies for hyper-spectral imaging
due to the relevant applications in remote sensing applications. By
exploiting the inherent sparsity of natural images in terms of their
spectral content (analogously to the spatial sparsity, but in the spectral
domain), low-cost and fast demonstrations were reported based on
learning the relationship between RGB and hyperspectral images.37,38

Deep learning approaches have also been proposed39,40 for this task,
which have reached state-of-the-art performance by leveraging also
the spatial information contained in the image and using the sur-
rounding context information provided by the scene to infer more
precise spectral information.41,42

As such, however, it seems not possible to directly translate these
methods to the domain of general spectroscopic applications, where
there is no spatial information and illumination can comprise
extremely narrow spectral features, which are typically absent under
natural conditions.

III. STOCHASTIC OPTICAL RECONSTRUCTION
SPECTROSCOPY (STORS)

The concept of stochastic sparse sampling at the basis of the
work of Boschetti et al.43 allows one to reconstruct a spectrum with
resolution surpassing that imposed by the response function of the
detection apparatus. In the frequency domain, this is obtained by
exploiting the emission characteristics of a pulsed random laser in a
chaotic regime. In this regime, the emission of a random laser is char-
acterized by few separated narrow peaks at random and uncorrelated
frequencies from shot to shot, spanning over the gain bandwidth of
the active medium. A target transfer function can, therefore, be sto-
chastically probed—over a continuous frequency range—in a trans-
mittance experiment. By collecting a large number of random peak
frequencies and amplitudes, it is possible to reconstruct the transmis-
sion function irrespectively of the spectral width or shape of the instru-
ment response function of the detection apparatus [see Fig. 1(c)]. The
reconstruction is possible since a random sub-sampling of a dense
space is repeated sequentially, allowing to over-determine a transfer
function at each frequency free of any resolution constraint, provided
that the random laser peaks in each emission spectrum are well sepa-
rated in frequency. In its simplest implementation, this approach
allows reconstructing arbitrary spectral features with no a priori infor-
mation, independently from the input light polarization, at a resolu-
tion that is not limited by the detection apparatus.

Input light polarization is not critical as it would not change the
results of a spectral reconstruction. In the case of bi-refringent, opti-
cally active, or chiral materials where a more complete characterization
may be required in terms of polarization, the input light can be simply
filtered after the chaotic laser source without affecting the general
working principle of the technique.

The time needed for a complete spectral reconstruction, given
the purely statistical nature of this method, depends on the amount of
narrow peaks generated by the chaotic light source per unitary fre-
quency range. In the case of an optically pumped random laser, the
sparse frequency sampling regime required for the reconstruction is
achieved by pumping the light source slightly above threshold and by
adjusting the pumping geometry, gain level, and concentration of scat-
terers. To make a quantitative example, assuming a target spectral
range and a spectral resolution of 10 and 0.01 nm, respectively, at least
1000 sampling random laser peaks are needed as a lower limit for
the reconstruction. Assuming a broad instrumental response of
�1nm, the random laser peak spectral density should be lower than
0.5 peak/nm. Using a more conservative value of 0.2 peaks/nm, even
in the best case of not overlapping peaks or repeated occurrences (i.e.,
uniformly distributed lasing peak frequencies), a minimum of 500 ran-
dom laser spectra would be required. At a pump laser repetition rate
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of 10Hz, this statistics is reached in �1min of acquisition time. The
subsequent numerical postprocessing for the spectral reconstruction
can be neglected on this timescale.

Due to its stochastic sampling nature, compressed sensing
approaches represent a straightforward option to speed up the mea-
surement, which would significantly reduce the size of the statistical
ensemble required for accurate reconstruction of the transfer func-
tion—and therefore, the measurement duration.

The main advantages of the technique reside in its independence
on the spectral response of the instrument and the robustness
endowed by the chaotic emission of optically pumped random laser
sources, which are characterized by cheap fabrication costs and high
robustness. It is interesting to note that random frequency instabilities
observed in traditional laser sources can also be used, in principle, to
perform a STORS reconstruction. This is particularly relevant for
applications with solid-state laser sources and could avoid expensive
fabrication steps to stabilize their cavity resonances.

On the downside, a few open problems are still hindering its
practical applications. Namely, the useful bandwidth depends on the
width of the gain curve of the active medium. In this respect, stochastic
spectral reconstruction approaches can serve a complementary role in
wavelength ranges where stable and narrow tunable laser sources are
not available. Additionally, alternative pumping schemes (e.g., electric,
CW optical pumping) would be desirable to avoid the need of optical
pulsed pumping of the random laser. While current electrically
pumped random laser sources still are hampered by a lower degree of
randomness and sparsity in their emission lines, important progress
has recently been made in this direction.44–46

It is worth noting that, in STORS, the concept of “sparsity” has a
more physical meaning, which refers to the need of sampling only a
few well-separated points during each measurement in order to
surpass the instrument resolution. In a way, this approach is deeply
different from compressed sensing, indeed several redundant measure-
ments are performed at each position while collecting the statistical
ensemble needed to reconstruct the signal. In this respect, the two

approaches can be seen as complementary. Moreover, compressed
sensing can help optimize the performance of STORS by minimizing
the number of independent measurements needed to retrieve the
spectrum—similarly to what has been already demonstrated in
stochastic microscopy applications.47 It is important to realize that
super-resolution techniques are enabled by an oversampling of the
signal in some domain, while all compression techniques, as the term
suggests, will typically degrade the resolution or at best maintain it. In
other words, a spectrum is reconstructed with increased resolution if it
is overdetermined in some domain.

IV. PRACTICAL LIMITATIONS

As concerns reconstructive spectroscopy approaches, their main
limitation lies in the need of a priori information about the target spec-
trum for correct reconstructions. Even in this case, these techniques
are often prone to artifacts and reconstruction of spurious features due
to numerical instabilities in the underlying underdetermined optimiza-
tion problem. This stands in contrast with direct measurement meth-
ods such as STORS, where no prior information is required. This
makes STORS applicable to the reconstruction of arbitrary transfer
functions including both narrow and broadband features, even if the
spectral content of an emitting light source cannot be extracted (see
also Fig. 2). The same is not granted for reconstructive spectroscopy
(based on either speckle, random encoders, or filter matrices), for
which the successful reconstruction of a spectrum relies on the strong
assumption that the signal is sparse in the direct domain of observa-
tion where the spectral reconstruction is carried out. This makes
reconstructive approaches less suitable to reconstruct continuous spec-
tral profiles—as multiple interference contributions at different fre-
quencies sum their intensities incoherently—thus reducing the useful
speckle contrast. Speckle spectrometers work properly when the signal
contains few frequencies such as few sparse peaks. This is why these
devices work well as wave-meters for laser lines stabilization, as moni-
tors of known signals, and to measure shifts from a reference fre-
quency up to attometer-accuracy (comb-speckle), rather than for

FIG. 2. Overview of recent spectral super-resolution techniques on the basis of four main criteria: (1) the need for a priori calibration using a high precision tunable laser and
(2) the need for a priori knowledge about the spectral features of the collected light. This is a major requirement for techniques that rely on regularization algorithms for retriev-
ing spectra, (3) the requirements on the illumination sources, and (4) the spectral information that can be retrieved from different targets, e.g., laser line wavelengths with
speckle spectrometry or transmission functions using STORS.
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general spectroscopic characterization or investigation, since some
knowledge of the spectral function must be supposed. Similar consid-
erations apply for reconstructive spectroscopy, as exemplified by the
fact that small spurious features are often inadvertently introduced by
the reconstruction process. Another limitation of filter-based spectro-
scopic instruments is related to the design of broadband random filters
compatible with fabrication constraints and yet exhibiting highly
uncorrelated spectral responses. Song et al. demonstrated a deep-
learning approach to optimize the spectral responses of the filters
taking into account practical fabrication and optical constraints to
maximize the encoding capacity of a set of broadband stochastic filters,
enhancing the reconstruction accuracy and reducing the sensitivity to
fabrication errors.48

V. FUTURE DEVELOPMENTS

Although speckle spectroscopy is not suitable for spectroscopic
investigation of transfer functions, it has great prospects of evolving
toward top-level wavemeter devices, allowing the measurements of
light source emission frequencies with high precision. A further devel-
opment in this direction could be that of understanding and handling
the spectral information encoded in the phase singularity points—the
vortices—easily obtainable from CCD speckle images. These have
shown to be highly sensitive to speckle fluctuation and could be used
to improve this technology even more in the future.49

Stochastic optical reconstruction spectroscopy and generative
spectroscopy based on filter matrices or encoders can be extended to
spectroscopic investigations where small instruments and fast discrete-
wavelength measurements are required—such as in quality control of
food and water, gas monitoring, or waste sorting. The operation of sto-
chastic optical reconstruction spectroscopy was recently demonstrated
using an optically pumped random laser, which highlighted the ease of
fabrication and how the narrow emission lines of a random laser could
be used for reconstruction. At the moment, however, these spectral
features depend on an optical pumping scheme, which is inadequate
to be used in a compact and cost-effective device. The development of
a miniaturized, high-resolution spectrophotometer is strongly relying
on the progress made with the light sources to reach the resolution
required for different applications. Electrically pumped random lasers
or conventional laser sources without cavity stabilization, such as
unprocessed diode lasers and distributed feedback lasers, represent
good candidates, as they may exhibit spectral drifts and mode jumps
enabling sparse sampling in the wavelength range of interest. Despite
the numerous advances made in the last few years in the development
of electrically pumped random lasers, however, we are still far from
obtaining the emission performances, chaotic behavior, and narrow
linewidths of the optically pumped sources needed for high resolution
spectroscopy.

An attractive possibility in the near future is to explore the limit
of the maximum resolution enhancement obtainable in STORS while
relaxing the sparsity constraint on the probing peaks. Indeed, in its
current formulation, this reconstruction technique works only if the
sampling peaks are sparse enough compared to the instrumental
response in order to obtain a convolution-free spectral reconstruction.
Based on recent developments in super-resolution stochastic recon-
struction microscopy, deep neural networks can be used to generate
super-resolved images starting from a set of frames with denser distri-
butions of point emitters, thus accelerating the overall reconstruction

process.50 A similar approach could be applied to the spectral domain
by creating a training dataset with denser spectra with possibly over-
lapping peaks of known frequency in order to reduce the amount of
acquisitions during a spectral reconstruction measurement.

An important application not strictly related to super-resolution
reconstruction is represented by spectral classification that often requires
separating spectra that exhibit subtle (yet known) differences such as in
the case of contamination detection or plastic identification and sorting
for recycling purposes. By combining STORS and machine learning, a
limited number of random laser shots may be sufficient to distinguish a
consistent number of different objects, especially for spectra with few
distinguishing features like polymers in the near-infrared region. A simi-
lar idea works also for reconstructive spectroscopy based on filters,
where few filters with tuned spectral responses can perform a sparse
sampling of the transmission spectra, classifying objects as a function of
their main spectral fingerprints and the number of filters used. In these
cases, rather than an oversampling of the data for improving resolution,
a down-sampling or a “manual” compression at the experimental level
is operated, reducing the amount of data needed for the identification.
The power of sparse sampling approaches relies on the twofold ability
of increasing resolution on one side, and performing spectral compres-
sion when irrelevant or redundant information is present. The latter
approach can work very well if combined with feature selection machine
learning algorithms based on the choice of the only spectral components
useful to the recognition, speeding up the classification as well as reduc-
ing the memory requirements.
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