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Creation and counting of defects in a temperature quenched Bose-Einstein Condensate

S. Donadello1,2, S. Serafini1, T. Bienaimé1, F. Dalfovo1,2, G. Lamporesi1,2,∗ and G. Ferrari1,2

1 INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, 38123 Povo, Italy
2 Trento Institute for Fundamental Physics and Applications, INFN, 38123 Povo, Italy

(Dated: October 1, 2018)

We study the spontaneous formation of defects in the order parameter of a trapped ultracold
bosonic gas while crossing the critical temperature for Bose-Einstein Condensation (BEC) at differ-
ent rates. The system has the shape of an elongated ellipsoid, whose transverse width can be varied
to explore dimensionality effects. For slow enough temperature quenches we find a power-law scaling
of the average defect number with the quench rate, as predicted by the Kibble–Zurek mechanism. A
breakdown of such a scaling is found for fast quenches, leading to a saturation of the average defect
number. We suggest an explanation for this saturation in terms of the mutual interactions among
defects.

PACS numbers: 03.75.Lm, 05.30.Jp, 67.85.De

I. INTRODUCTION

A physical systems can exhibit states with different
properties and symmetries depending on the values of
the macroscopic parameters that describe it. Phase tran-
sitions connecting different states of a system across a
critical value of a control parameter are ubiquitous in na-
ture, from cosmology to magnetism and from classical to
quantum regimes. After crossing a critical point, systems
need to rearrange themselves, adapting their properties
to the new conditions. While equilibrium configurations
are generally well-known, the non-equilibrium dynamics
of phase transitions occurring at a finite rate is far less
understood.

The Kibble–Zurek mechanism (KZM) [1, 2] deals with
the dynamics across a phase transition involving the ap-
pearance of an order parameter in the system. The the-
ory predicts a power-law scaling of the density of defects
that the order parameter would contain after crossing the
transition as a function of the quench rate. The scaling
exponent depends on the intrinsic properties of the sys-
tem and is the same for all systems belonging to a given
universality class, independently of the microscopic de-
tails. Predictions were initially given for uniform systems
undergoing a linear quench in time, and later extended to
some inhomogeneous cases [3–5]. A quantitative compar-
ison with the observed behavior of actual systems, how-
ever, is rather challenging. For instance, the exact time
at which defects are created cannot be easily estimated
and very little is known in the case of nonlinear quenches
or quenches where the control parameter is spatially in-
homogeneous. Furthermore, interactions between defects
are ignored in the KZM, whereas real systems are likely
affected by such interactions during the post-quench evo-
lution, or even at the early stages after the transition
crossing.

The KZM has been experimentally observed and tested
in a large variety of systems, such as liquid crystals [6],
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superfluid He-3 [7, 8], thin film superconductors [9, 10],
annular Josephson junctions [11, 12], multiferroic crystals
[13, 14] and ion chains [15, 16]. Ultracold atomic gases
represent an ideal testbed to explore different aspects of
quench mechanisms, since many of their parameters can
be finely controlled and tuned. Harmonically confined
gases, in oblate and prolate geometries, as well as uniform
gases have been studied by quenching the temperature
across the BEC transition [17–21]. In addition, quantum
phase transitions at zero temperature can be crossed by
varying the interaction parameters as, for instance, in the
case of the transition from Mott insulator to the super-
fluid phase of a gas in an optical lattice [22, 23], or from
the miscible to the immiscible phase of a two-component
gas [24].

In this article we experimentally investigate the cre-
ation of defects in a harmonically trapped ultracold gas
of sodium atoms while evaporatively cooling it across the
BEC transition at different rates. We extend our previ-
ous experiments [18], where we observed the KZM scaling
law, by collecting further data with an improved protocol
for quenching and imaging. We provide new data for dif-
ferent values of the transverse confinement frequencies,
in order to possibly explore effects related to the dimen-
sionality of the system. As shown in [25], the observed
defects in the order parameter are quantized vortex lines
which, due to the role of the transverse confinement of
the elongated condensate, manifest a peculiar soliton-like
character as in the solitonic-vortex structures predicted
in Refs. [26, 27].

The paper is organized as follows. Section II briefly in-
troduces the KZM theory and focuses on the prediction
of the power-law exponent in connection with dimension-
ality. In Sec. III, we describe the experimental methods
to quench a sodium gas across the BEC transition and
explain the techniques we use to reveal the defects and
characterize the system properties. In Sec. IV we report
on the final results and describe the different observa-
tions in case of slow or fast quenches. Conclusions are
provided in Sec. V.
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II. KIBBLE–ZUREK MECHANISM

The KZM describes the defect formation in a sys-
tem undergoing a continuous phase transition [1, 2, 28],
focussing on the spontaneous symmetry breaking that
occurs at the critical value λc of a control parame-
ter λ. If we consider the reduced control parameter
ε = (λc − λ)/λc, a second-order phase transition is char-
acterized by the divergence of the equilibrium correlation
length ξ(ε) = ξ0/|ε|ν and the equilibrium relaxation time
τ(ε) = τ0/|ε|zν . Here ν and z are the critical exponents
that depend only on the universality class of the transi-
tion, while ξ0 and τ0 are constants related to the specific
microscopic properties of the system.

The phase transition is crossed with a variable quench
rate defined by the time derivative of the control param-
eter ε̇. If we consider a quench that is linear in time, we
can express the control parameter as ε(t) = t/τQ. By
doing so, the quench time τQ = 1/ε̇ becomes the rele-
vant time scale for the quench. The relaxation time τ
diverges at the critical point t = 0 as qualitatively rep-
resented in Fig. 1. Starting from a high-symmetry state
at t � 0, where τ is small, the spontaneous symmetry-
breaking occurs while driving the system across the tran-
sition: τ diverges and the dynamics freezes because the
system is no longer able to adiabatically follow the vari-
ation of the control parameter. The dynamics becomes
adiabatic again for t� 0.

In the context of the KZM, the crossing of the contin-
uous transition is approximately described by the pres-
ence of three distinct regimes. As illustrated in Fig. 1,
the frozen regime is the one during which the relaxation
time τ is larger than the time distance from the transi-
tion. The time for which the distance from the transition
equals the relaxation time is called freeze-out time t̂: the
system is considered frozen for |t| < t̂ and adiabatic else-
where. By introducing ε̂ as ε(t̂), one can express the
relaxation time at t̂ as

τ̂ = τ(ε̂) =
τ0
|ε̂|νz

=
τ0τ

νz
Q

|t̂|νz
.

From the definition τ(ε̂) = |t̂|, the freeze-out time results
to be

t̂ =
(
τ0τ

zν
Q

) 1
1+zν . (1)

As a consequence of causality and of the frozen dy-
namics, spatially disconnected regions of the system can
independently choose different values for the order pa-
rameter while crossing the transition. The KZM predicts

that the average size of such domains ξ̂ is the correlation
length at ε̂,

ξ̂ = ξ(ε̂) = ξ0

(
τQ
τ0

) ν
1+zν

. (2)

Since topological defects can arise from discontinuities
of the order parameter, the presence of independent do-
mains after the freeze-out can result in the formation of

τ̂

−t̂ +t̂0 t

∣∣ ε
ε̇

∣∣ = t

adiabatic frozen adiabatic
τ(t)

slow quench

τ̂

−t̂ +t̂0 t

∣∣ ε
ε̇

∣∣ = t

adiabatic frozen adiabatic
τ(t)

fast quench

FIG. 1. Schematic representation of the timescales around the
transition at t = 0, where the relaxation time τ = τ0τ

νz
Q /tνz

(solid lines) diverges. In the KZ theory, the extent of the
frozen region is approximated by the freeze-out time t̂, corre-
sponding to the point where τ equals the time distance from
the transition |ε/ε̇| (dashed lines). Qualitative differences be-
tween slow (small τQ) and fast (large τQ) quenches are illus-
trated.

defects at the boundaries between domains. The average
density of defects n in the system can be calculated [28]

as the ratio between the size of the defects ξ̂d and the

size of the domains ξ̂D, with d and D the dimensionality
of the defects and of the space, respectively:

n ∼ ξ̂d

ξ̂D
=

1

ξD−d
0

(
τ0
τQ

)(D−d) ν
1+zν

. (3)

As discussed in Ref. [28], in order to obtain a better

estimate of n, ξ̂ should be multiplied by a factor f , with
the value of f being in the range 1–10, depending on
the specific model. Such a correction reflects also on the
determination of t̂.

The main prediction of the KZM is the power-law
scaling of the density of defects with the quench time
n ∝ τ−αQ . The above derivation is obtained considering a
homogeneous system, and predicts a power-law exponent

αhomog = (D − d)
ν

1 + zν
. (4)

For inhomogeneous systems the transition does not oc-
cur simultaneously everywhere, and the theory must keep
the external trapping potential into account, with the in-
troduction of local parameters. Under the assumptions
of a linear quench and of a uniform control parameter
in the whole system, for a harmonic trap the power-law
exponent becomes [3, 4]

αharm = (D − d)
1 + 2ν

1 + νz
. (5)

The prediction of Eq. (3) refers to the total density
of topological defects at their creation, while the post-
quench dynamics is completely ignored in the model. Fol-
lowing the KZM, the relevant time, that should be con-
sidered for counting defects after the transition crossing,
is the freeze-out time of Eq. (1).
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TABLE I. Power-law exponents α predicted for the KZM from
Eqs. (4) and (5) in a homogeneous gas and in a harmoni-
cally trapped gas, if the critical exponents predicted by the
F-model, ν = 2/3, z = 3/2 [29] are used, and assuming the
defects to be either solitons or vortices.

D − d αhomog αharm

solitons 1 1/3 7/6
vortices 2 2/3 7/3

The power-law exponents (4) and (5) depend on the
critical exponents ν and z, whose values are not know a
priori. A first reasonable choice for the critical exponents
could come from a pure mean-field calculation, that gives
ν = 1/2 and z = 2. Going beyond mean-field theory, the
so-called F-model [29] predicts ν = 2/3 and z = 3/2. In
this work, we will consider the values taken from the F-
model, since recent experiments with ultracold gases [20,
21, 30] seem to support this choice for the universality
class of a 3D Bose-Einstein condensate.

The exponent α depends also on the quantity (D− d),
related to the dimensionality of the system and of the
defect. Using superfluid gases, one generally deals with
two kinds of defects: solitons or vortices. In the case of
solitons the order parameter varies along one direction
only and one has (D − d) = 1, which includes 2D planar
solitons in 3D systems, linear defects in 2D systems or
point-like defects in 1D systems. In the case of quan-
tized vortices, instead, the order parameter varies by 2π
around a singular point, hence it needs two dimensions
to be defined, so that (D − d) = 2. Linear vortical fila-
ments in 3D systems or pointlike defects in 2D systems
belong to the same dimensionality class in the framework
of the KZM. The values of α that might be interesting
in this work, in relation to the formation of vortices or
solitons, are reported in Table I for the homogeneous and
harmonic cases.

The nature of the defects which form spontaneously at
the transition depends mainly on three relevant length
scales: the size of the system at the transition, the av-

erage domain size ξ̂ (see Eq. (2)) and the healing length
ξl = 1/

√
8πaρ, where a is the scattering length and ρ

is the atomic density. Clearly the system size has to be

larger than ξ̂ and ξl at least along one direction, other-
wise different domains are not allowed and defects cannot
form. Let us consider an elongated system like the one
available in our laboratory, with a long axial size ∆z and
a shorter transverse width ∆r. As illustrated in Fig. 2, if

∆r is simultaneously larger than ξ̂ and ξl, then vortices
can be defined and they will likely be the most probable
defect forming with the quench. If, instead, ∆r is smaller
or of the same order of magnitude of at least one among

ξ̂ and ξl, then the domains are forced to line up one next
to the other along the long axis of the system and soliton
formation is favored.

However, what is formed at the transition does not nec-
essarily coincide with what is observed at the end of the

�r > ⇠̂, ⇠l

�r < ⇠̂, ⇠l

�r

⇠̂

⇠̂

⇠l

⇠l

�r

�z

FIG. 2. Qualitative illustration of the spontaneous formation
of vortices or solitons in elongated systems depending on the
relative magnitude of the transverse size ∆r, the domain size
ξ̂, and the healing length ξl.

quench. This depends on the dynamics and the stability
of the defects. In order to quantitatively estimate the
stability of different defects in a given BEC [26, 31, 32],
it is convenient to introduce the dimensionless parameter

γ =
Rrad

2ξl
=

µ

~ωrad
, (6)

where Rrad is the transverse Thomas-Fermi radius of the
formed BEC after the cooling ramp. When γ is of the
order of 1 or smaller, the condensate is too narrow to host
a vortex, while solitons (planar defects perpendicular to
the long axis of the system) are allowed and, in this limit,
they are also stable. When γ � 1, ξl is smaller than the
system size along any direction. In principle both planar
solitons (d = 2) and vortex filaments (d = 1) can exist.
However, the larger is γ, the higher is the probability for
solitons to decay via snake instability [33] into vortical
lines with lower energy [31]. Hence for γ � 1, if solitons
are initially formed via the KZM, they likely decay into
vortices.

III. METHODS

A. BEC production

We produce ultracold samples of sodium atoms in the
internal state |F,mF〉 = |1,−1〉 in a cigar-shaped har-
monic magnetic trap. A detailed description of the ex-
perimental apparatus can be found in Ref. [34]. The as-
pect ratio of the trap is defined as AR = ωrad/ωax, with
ωrad/2π and ωax/2π being the trapping frequencies along
the radial and axial directions. In the experiment we keep
ωax fixed to 2π×13 Hz and vary ωrad from 2π×76 Hz to
2π× 214 Hz, hence exploring a variation of AR from 5.8
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ν = 1370 kHz

te = −49 ms

ν = 1360 kHz

te = +0 ms

ν = 1350 kHz

te = +49 ms

ν = 1330 kHz

te = +147 ms
0.0

0.5

1.0

1.5

2.0
OD

FIG. 3. Sequence of experimental absorption pictures of
the atomic sample around the transition, occurring at νc ∼
1360 kHz for a ramp of 203 kHz/s with AR = 10.1. All
these pictures have been taken after a time of flight of 50 ms.
At t = 0 a small condensate fraction of ∼ 1% of the atoms
appears in the thermal cloud and grows for t > 0. In the
last picture the condensate appears much more definite, and
a defect is clearly visible in it. With such a technique it is
almost impossible to detect the presence of defects around
t ∼ 0. They start to become visible about 100 ms after the
transition.

to 16.5. The radius Rrad varies consequently by a factor
2, from about 20 to 10 µm.

The sample is cooled down via forced evaporative cool-
ing and pure BECs of typically 107 atoms are produced.
The part of the evaporation ramp in the vicinity of the
transition – from now on called quench ramp – is per-
formed at different rates, from 50 kHz/s to 2 MHz/s,
in order to explore the KZM with the appearance of a
few or many topological defects in the condensate. For
a given AR, the variation of the final Rrad at the end of
the evaporation ramp for different τQ is negligible.

The quench ramp is followed by a variable wait time
tw, during which an RF shield is kept on to prevent from
heating. After that, the atoms are released from the trap
and observed with a triaxial absorption imaging, as in
Ref. [25].

B. Determination of τQ

As discussed in Sec. II, a finite cooling rate across the
transition makes the system freeze for a variable amount
of time (' 2t̂). The defect number depends on the system
and on the quench parameters within such a time inter-
val. However, neither the exact time of creation nor the
time at which they start to interact are precisely known
from theory. One could argue that defects are created at

−t̂, when the system starts freezing, or at +t̂, when the
system is again able to follow the changes of the exter-
nal control parameter after breaking the symmetry. The
time t̂ itself is also hard to estimate (see Sec. II).

The impossibility to unambiguously identify the time
of defect creation and of interacting dynamics, combined
with the observation of a finite lifetime for the stochastic
defects [25, 35], suggests us to measure the defect number
after a fixed given evolution time te from the transition
point, which is clearly identifiable as can be seen in Fig.
3. This protocol differs from the one used in Ref. [18],
where the quench rate was varied while keeping initial
and final temperatures fixed for all different ramps. In
addition, we are in the condition to precisely identify
the critical radio-frequency νc and temperature Tc where
the BEC transition occurs for any given experimental
condition, i.e., for each choice of ωrad and quench ramp.

Since defects need a time of the order of a hundred
ms to become clearly detectable in terms of density de-
pletion, we choose a time interval te from the transition
(te > 100 ms), after which the atoms are released from
the trap. The time te is kept fixed for any given quench
ramp. If te is reached before the end of the quench ramp
(slowest ramps), the ramp is interrupted before its com-
pletion, the atoms are released from the trap and ob-
served after a long time of flight (TOF); a larger fraction
of the atoms will remain in the non-condensed state with
a higher temperature. Else, if te is longer than the evap-
oration ramp (fastest ramps) a waiting time tw is added
in the sequence after the end of the ramp and before the
observation. Figure 4 shows the relevant timescales in
case of ramps with different rates.

The radio frequency ramp causes a temperature

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

ν
[M

H
z]

0.0 0.4 0.8

1.20

1.35

1.50

158 kHz s−1

0.0 0.4 0.8

t [s]

553 kHz s−1

0.0 0.4 0.8

1930 kHz s−1

quench
νc

te

tTOF

FIG. 4. Experimental quench sequence for three ramp speed
values. The radio frequency ν (solid blue lines) is plotted as
a function of time relative to the start of the final quench
ramp. Negative times refer to the preliminary evaporative
cooling stage above Tc, which is the same for all samples.
The critical point νc of the BEC transition is reported for
each quench ramp (cyan squares). The evolution time te is
kept constant, relative to the transition (shadowed in yellow).
After a time te = 250 ms the sample is released, let expand for
a fixed TOF of 120 ms (shadowed in red), and finally observed
with absorption imaging (dashed lines). For faster quenches
a waiting time is added while keeping a constant RF shield
on. The quench time τQ in the three cases is 970 ms, 240 ms
and 60 ms.
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FIG. 5. (a) Measured temperature across Tc for a slow (58
kHz/s), medium (158 kHz/s) and fast (710 kHz/s) quench
ramp. A linear fit is shown and the transition region is high-
lighted. (b) Critical temperature at the BEC transitions as
a function of the ramp speed for different ωrad. These values
of Tc are used in Eq. (7) for the determination of the quench
time.

quench. We have verified that, for all samples, the evapo-
ration ramp is always slow enough for the system temper-
ature to adiabatically follow the variation of the radio-
frequency. The reduced control parameter can thus be
expressed as ε = 1 − (T/Tc) and the quench rate as
ε̇ = −(1/Tc)(∂T/∂t). The temperature variation in time,
(∂T/∂t), is indirectly controlled via the speed of the evap-
oration ramp (∂ν/∂t). In Fig. 5a we show the measured
temperature as a function of frequency around Tc for
three ramp slopes. With a linear fit to each dataset we
extract (∂T/∂ν), that is roughly constant in the differ-
ent experimental conditions and has an average value of
(∂T/∂ν) = 4.5(9) nK kHz−1. Following such a procedure
and referring to the quench time introduced in Sec. II,
we have all the ingredients to estimate τQ, for any ramp
and experimental condition, as

τQ = −Tc
(
∂T

∂t

)−1

= −Tc
(
∂T

∂ν

∂ν

∂t

)−1

, (7)

where Tc is identified by the onset of the BEC as in Fig. 3,
and reported in Fig. 5b as a function of (∂ν/∂t). This
procedure improves the determination of τQ compared to
our previous work [18], where τQ was simply defined as
the quench time duration.

C. Defect observation and counting

The total atom number at the transition is kept fixed
to Nc = 27(1)× 106 atoms, by tuning the number of
atoms involved in the early stage of laser cooling. We

observe that, even if the number of atoms at the transi-
tion is almost constant, the final number of atoms in the
BEC varies significantly with τQ, both because of differ-
ent cooling efficiency and of the finite evolution time.

The natural size of the defects in the trapped system,
at the end of the cooling ramp, is of the order of the
in-situ healing length ξl, which, at the end of the cool-
ing ramp, is as small as 100-200 nm. Therefore we let
the BEC expand for a long TOF ranging from 80 ms to
150 ms, depending on the trap AR used. In such a way
the defects become larger than our imaging resolution of
3 µm and acquire the specific twisted shape described in
Ref. [25]. The presence of a levitating magnetic field
gradient makes it possible to achieve such a long TOF
preventing the BEC from falling.

The measured defect number Nd is averaged over many
experimental realizations in order to get good statisti-
cal samples for each experimental condition: due to the
power-law scaling of the defect number in the KZM we
iterate longer (typically a few tens) for bigger τQ, where
〈Nd〉 is smaller. The error bars for 〈Nd〉 are estimated as

∆Nd =
√
δN2 + (1/N), that is the sum in quadrature of

the standard error of the mean (δN) and of a resolution

term (1/
√
N) decreasing with the number of observations

N .

IV. RESULTS

We measure the average number of defects 〈Nd〉 as a
function of the quench time τQ using the quench method
described in Sec. III. Figure 6 shows the results for four
different transverse confinements, ωrad/2π = 76, 131, 174
and 214 Hz. The data clearly exhibit two regimes:

10−1 100

τQ [s]

10−1

100

〈N
d
〉

76 Hz
131 Hz
174 Hz
214 Hz

FIG. 6. Average number of defects 〈Nd〉 as a function of
the quench time τQ for several transverse confinements and
with a fixed evolution time te = 250 ms. Each point with its
error bar is calculated by averaging over tens of experimental
realizations. A power-law behavior (linear in the log-log scale)
is observed for large τQ, while a saturation effect is present
for small τQ. The lines correspond to fitting functions of the
form 〈Nd〉 = Nsat[1 + (τQ/τ

0
Q)2α]−1/2.
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for large τQ, the observed 〈Nd〉 decreases as a power
law, while for small τQ it saturates around a constant
value Nsat. We fit the data with the function 〈Nd〉 =
Nsat[1 + (τQ/τ

0
Q)2α]−1/2, which has the same behavior.

The fitting parameters α and τ0Q represent the power-law
exponent and the characteristic quench time at which
the two regimes interpolate, respectively. The results are
reported in Table II.

TABLE II. Saturation number Nsat, crossover time τ0Q and
power-law exponent α extracted by fitting the data of Fig. 6
for various radial trapping frequencies and aspect ratios.

ωrad[s−1] AR Nsat τ0Q [s] α
2π×76 5.8 2.4(3) 0.49(13) 1.6(4)
2π×131 10.1 2.6(3) 0.26(8) 1.3(3)
2π×174 13.4 2.2(3) 0.32(8) 2.3(8)
2π×214 16.5 2.2(3) 0.27(6) 2.8(9)

A. Large τQ: Power-law scaling of defects

In case of small cooling rates, the average number of
defects, detectable 250 ms after the transition, decreases
as a power law, in agreement with the prediction of the
KZM and with the results reported in our previous work
[18]. Figure 7 shows how the power-law exponent varies
with the transverse confinement at fixed axial confine-
ment.

The predictions of the KZM for a harmonically trapped
condensate, with the critical exponents taken from the
F-model, are α = 7/6 and 7/3 in case of solitons and
quantized vortices, respectively (see also Fig. 7). As out-
lined in Sec. II, the nature of the spontaneously created
defects is strongly linked to the relative magnitude of ∆r,

ξ̂ and ξl.

50 100 150 200 250

ωrad/2π [Hz]

0

1

2

3

4

α

7/3 (vortices)
7/6 (solitons)

FIG. 7. Power-law exponent α obtained by fitting the data
of Fig. 6 for different radial frequencies. The KZ predictions
for solitons and vortices in an harmonically trapped 3D con-
densate, from Table I, are shown as horizontal lines for com-
parison.

At Tc, large phase fluctuations are present and it is
impossible to define defects for such early times [3]. Let
us consider the first small nucleus of the forming BEC,
containing just about 1% of the total atom number in
the system at Tc (see also Fig. 3). We can estimate
∆r as twice the transverse Thomas–Fermi radius Rrad.
In the various experimental conditions reported here, ∆r
would then range between 10 and 20 µm and ξl would
be already smaller than 1 µm. As the system is further
cooled, ∆r grows while ξl becomes smaller and smaller,
and hence we always have ∆r � ξl. Finally, in order to

estimate the average domain size ξ̂ according to Eq. (2),
we can proceed as follows. Let us assume the parameter
ξ0 to be of the order of λdB = ~/

√
2πmkBTc and τ0 of the

order of the collisional time at center of the sample, where
the BEC is nucleated, τ0 ' (ρ0σcollvth)−1, with σcoll =

8πa2 and vth = 4
√
kBTc/(πm). With these numbers

at hand, one obtains ξ̂ ranging from 1 to 3 µm, hence
about one order of magnitude smaller than ∆r. This
would suggest that in our experimental conditions, the
formation of vortices is always favored. However, the
possible role of the multiplicative f factor (from 1 to 10)
mentioned in Sec. II makes it not easy to draw definite
conclusions. For comparison, a direct measurement of

ξ̂ ' 1 µm was performed on a uniform Bose gas in Ref.
[21].

The data in Fig. 7 are consistent with the nucleation
of vortices for the two largest values of ωrad, while they
are closer to the soliton formation for smaller ωrad. Such
a deviation cannot be easily explained by the above anal-

ysis in terms of ∆r, ξ̂ and ξl, which would rather suggest
an opposite trend. However, the comparison with theory
must be taken with care. On the one hand, the exper-
imental error bars are still too large to make definitive
statements. On the other hand, the KZM predictions for
α assume a spatially uniform temperature profile in the
system during the quench, while the temperature profile
is actually nonuniform along the axis of our elongated
condensate due to the different thermalization times in
the axial and transverse directions. A derivation of the
KZ exponents when the system exhibits inhomogeneities
in both the density and temperature profiles is not yet
available and might explain the variations of α with ωrad.

Finally, it is worth recalling that in our previous
work [18] we presented a measurement of 〈Nd〉 similar
to the one of Fig. 6, for an aspect-ratio of 10. In that
case we found α = 1.38(6) which is fully consistent with
the new data of the present work, despite several differ-
ences in the experimental procedures.

B. Small τQ: Saturation of defect number

According to the KZM the defect number in the sys-
tem should follow a power-law scaling for all τQ. Figure 6
shows, instead, that for fast quenches, 〈Nd〉 clearly sat-
urates. The values of Nsat resulting from the fits to the
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FIG. 8. Average number of defects as a function of the
quench time with a fixed ωrad = 2π × 131 Hz, for different
evolution times. We note that the evolution time does not
substantially influence the linear behavior, which can be fitted
with a single power-law (dashed purple).

four datasets are reported in Table II and their average
value is 2.4(3). Here we suggest that such a saturation,
which is almost insensitive to the change of the radial
confinement, might originate from the post-quench dy-
namics of the condensate. Indeed, one must keep in mind
that, for the data in Fig. 6, the counting of defects is per-
formed 250 ms after the BEC transition.

The saturation for fast quenches was not observed in
Ref. [18] because such high evaporation rates were not in-
vestigated. However, Refs. [18, 25, 35] report signatures
of a post-quench dynamics and a finite lifetime of defects
in elongated BECs as the ones studied here. Such a phe-
nomenon, not considered in the KZM, may likely alter
the defect counting, at least in the fast quenches regime.

In order to investigate the effect of the condensate dy-
namics on our measurements, we repeat the whole set
of measurements of 〈Nd〉, in the case of AR = 10.1, for
different values of the evolution time: te = 250, 400 and
750 ms. The results are reported in Fig. 8. We first ob-
serve that, in the power-law regime for large τQ, the data
mostly overlap and the power-law exponent α looks in-
sensitive to the evolution time. Instead, in the saturation
region, the observed 〈Nd〉 exhibits a clear dependence on
te: for longer evolution times the saturation occurs at
lower defect numbers, suggesting a nonnegligible role of
the vortex-vortex interaction that might enhance the vor-
tex number decay.

Using the data reported in Fig. 6 and Fig. 8 and as-
suming a Poisson distribution of Nd, given the stochastic
nature of the KZM, we try to reconstruct the amount
of defects created during the quench, before they start
interacting and decaying in number. To this purpose we
proceed as follows. We first bin the experimental data
of Fig. 6 by grouping the points lying in given inter-
vals of 〈Nd〉, independently of τQ and ωrad. For each
interval of 〈Nd〉 we plot the histogram of the measured
occurrence probability of a given Nd in N experimental

runs and compare it to the Poisson distribution which
has its mean value at the center of the considered bin, as
shown in Fig. 9. As one can see, for cases correspond-
ing to the power-law regime, where 〈Nd〉 . 1, there is a
good agreement between the experimental data and the
Poisson distribution, while the distributions in the sat-
uration regime, where 〈Nd〉 & 1, show clear deviations.
Of course, the distribution of defects observed after the
evolution time is not the distribution which would be
observed just after crossing the BEC transition, which
would be Poissonian with a larger 〈Nd〉. However, if the
decay time of each single defect is independent of the ac-
tual number of defects present in the same condensate,
then the overall effect of the decay would be a decreas-
ing of 〈Nd〉 with te independent of the quench rate, but
keeping a Poissonian distribution. Conversely, if the de-
cay time of the single defect depends on the presence of
other defects in the condensate, due to mutual interac-
tions, then 〈Nd〉 would decrease with te differently for
different quench rates, thus producing a non-Poissonian
distribution of the observed defects.

In Ref. [35] we indeed found that the life time of a
vortex is the same if a condensate has one (τ1, of the
order of 1 s) or two (τ2 ' τ1) vortices, but it is shorter
if the vortices are three (τ3, of the order of 0.5 s) or
more. We can now use this information in combination
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FIG. 9. Defect counting statistics. Histograms show the
measured occurrence probability of Nd for given intervals of
〈Nd〉 in the data reported in Fig. 6. The number of exper-
imental runs N considered for each histogram is reported.
Histograms are compared to the Poisson distribution which
has its mean value equal to the central value of the consid-
ered bin. The agreement with the experimental data is good
for small values of 〈Nd〉, i.e., in the power-law regime (upper
panels), while it is bad in the saturation regime (lowest two
panels).
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FIG. 10. Predictions for the average defect number ver-
sus quench time, including the effects of defect decay during
the evolution time after the BEC transition (see text). The
dashed line is the KZ power-law scaling (up to an arbitrary
vertical offset) with the same exponent α of the experimen-
tal data of Fig. 8. The solid curves, from top to bottom,
correspond to the average defect numbers expected after an
evolution time te = 250, 400 and 750 ms, respectively.

with Figs. 8 and 9. Let us start from the slow quench
regime where the majority of the condensates host very
few vortices. In this regime, we can assume that the post-
quench dynamics produces just a vertical shift of 〈Nd〉,
without changing the power-law scaling. This allows us
to infer what would be the value of 〈Nd〉, even for faster
quenches, if the defects were observed just after the tran-
sition and under the assumption that the KZ scaling law
is valid in the whole range of τQ: in fact, it is enough to
extrapolate the observed power law to the whole range
of τQ (purple dashed line in Fig. 8), adding an upward
vertical shift as a free parameter. For each τQ, we cal-
culate the Poisson distribution of defects corresponding
to such extrapolated value 〈Nd〉. Then, the occurrence
P (Nd) of each defect number Nd in the distribution is re-
duced by using an exponential decay, exp(−te/τd), with
the life times τ1, τ2 and τ3 taken from Ref. [35]. We also
assume that τd, with d= 4 or larger, is much shorter than
any other relevant timescales (in practice we truncate the
Poissonian distribution for Nd ≥ 4 and then renormalize
it before applying the time evolution). In this way, the
initial Poissonian distribution, at a given τQ, is deformed
and the average number of defects after the evolution
time te is lowered by an amount which depends on the
quench rate. This effect is larger for fast quenches, be-
cause the initial number of defects is larger, thus making
their decay faster.

Using this extrapolation protocol, we obtain a predic-
tion for the average defect number which would be ob-
served after an evolution time te starting from a Poisso-
nian distribution fixed by the KZ scaling. The resulting
curves are shown in Fig. 10. The arbitrary upward shift
of the dashed line has been adjusted in such a way that

the predicted values of 〈Nd〉 at large τQ are close to the
observed ones. The overall qualitative behavior of the
curves predicted by this simple model is rather similar
to the experimental observations in Fig 8: a clear sat-
uration for fast quenches emerges and the time scale of
the transition between the two regimes falls in the same
range of τQ. Despite the strong assumptions made, which
would require extensive measurements and simulations to
be validated, this analysis suggests indeed that the defect
lifetime can be a possible explanation for the saturation
that we observe in the KZ scaling.

V. CONCLUSIONS

In this work, we measure the number of defects sponta-
neously created in a BEC after cooling a trapped bosonic
gas of sodium atoms across Tc with different quench rates
and for several transverse confinements. We clearly dis-
tinguish two regimes: a) For slow cooling rates (large τQ)
a power-law behavior of the average defect number is ob-
served as predicted by the KZM. In the case of strong
confinement, our results are consistent with the expo-
nent predicted for a harmonically trapped elongated gas
in which vortices are spontaneously produced. On the
other hand, in the case of weaker confinement, the expo-
nent turns out to be slightly smaller. b) For fast cooling
rates (small τQ) we see a clear saturation of the measured
average defect number to a value around 2.4, almost in-
dependent of the transverse confinement. We provide
a qualitative interpretation in terms of the post-quench
dynamics and interaction between vortices.

These results, which extend and improve our previous
observations of Ref. [18], represent a further step toward
a better understanding of the KZM in inhomogeneous
bosonic systems. They can also stimulate the investiga-
tion of the dynamics of quantized vortices in quenched
superfluid with boundaries. A possible approach con-
sists of performing extensive numerical simulations of the
condensate dynamics at finite temperature using, for in-
stance, the stochastic Gross-Pitaevskii equation in condi-
tions similar to that of our system. Work in this direction
is in progress [36].
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