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Abstract

A numerical procedure for analyzing electromagnetic (EM) fields interactions with biological tissues

is presented. The proposed approach aims at drastically reducing the computational burden required

by the repeated solution of large scale problems involving the interaction of the human body with EM

fields, such as in the study of the time evolution of EM fields, uncertainty quantification, and inverse

problems. The proposed volume integral equation (VIE), focused on low frequency applications, is a

system of integral equations in terms of current density and scalar potential in the biological tissues

excited by EM fields and/or electrodes connected to the human body. The proposed formulation

requires the voxelization of the human body and takes advantage of the regularity of such discretiza-

tion by speeding-up the computational procedure. Moreover, it exploits recent advancements in the

solution of VIE by means of iterative preconditioned solvers and ad hoc parametric Model Order

Reduction techniques. The efficiency of the proposed tool is demonstrated by applying it to a couple

of realistic model problems: the evaluation of the peripheral nerve stimulation due to the gradient

coils of a magnetic resonance imaging scanner during a clinical examination and the assessment of

the exposure to environmental fields at 50 Hz of live-line workers with uncertain properties of the

biological tissues. Thanks to the proposed method, uncertainty quantification analyses and time

domain simulations are possible even for large scale problems and they can be performed on stan-

dard computers and reasonable computation time. Sample implementation of the method is made

publicly available at https://github.com/UniPD-DII-ETCOMP/BioMOR.

Keywords: Bio-electromagnetism, computational electromagnetics, electromagnetic (EM) analysis

fast methods, integral equations, magnetic resonance imaging (MRI), Peripheral Nerve Stimulation

(PNS), Uncertainty Quantification

1. Introduction

The computation of the electromagnetic (EM) fields generated within the human body by an

external source, which can be a system of coils [1] or a system of electrodes [2], is required by different
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biomedical applications. For instance, Maxwell’s equations must be solved in the human body

when evaluating the exposure to the EM fields produced by a magnetic resonance imaging (MRI)5

scanner [1, 3, 4]; when planning an oncological hyperthermia treatment driven by magnetic fields [5];

when studying Transcranial Magnetic Stimulation (TMS) for the treatment of neurodegenerative

diseases [6, 7]; or, when assessing the exposure to environmental EM fields [8, 9, 10, 11, 12, 13, 14, 15].

The recent evolution of the computing resources allowed for handling large scale EM problems,

whose computational domain includes the entire human body, in reasonable computation times (of10

the order of hours [16]), although with a significant requirement in terms of memory (about 50 GB for

1 million degrees of freedom [17], depending on the type of problem and adopted method). However,

some advanced applications require the repeated solution of such large scale problem multiple times,

for different values of few input parameters. This happens, for example, in the study of the time

evolution of EM fields described in the frequency domain in presence of the skin effect, like in high15

conductive materials [18]. Another case which requires the repeated solution of such large scale EM

problems is in uncertainty quantification (UQ), where, generally, the Monte Carlo (MC) method is

used to quantify the uncertainty of some quantities of interest arising from the randomness, or the

lack of knowledge, of some input parameters [19, 20]. A third case where repeated solutions of the

EM problem are required is in inverse problems [21], like the optimal design of dielectric pads for20

shimming in high-field MRI [22] or the quantitative imaging of the electric properties from MRI

measurements [23, 24].

Despite the possibility of handling large scale problems for some direct evaluations, when the

number of required repeated solutions grows significantly, the global computational cost of the

advanced applications becomes unaffordable, making the entire problem unsolvable from a practical25

point of view. In order to deal with this kind of computationally demanding large scale problems,

parametric Model Order Reduction (pMOR) approaches can be adopted [25]. The number of degrees

of freedom of the original problem (of the order of some millions for an entire human body) is

significantly reduced by pMOR, which limits the problem complexity while substantially keeping the

accuracy of the original solver. Thus, whereas the solution of the single original problem requires30

some hours of computation, the solution of the reduced model is almost instantaneous; therefore,

repeated solutions of the problem varying some parameters can be performed in a reasonable time.

The objective of this paper is twofold. On the one hand, an Integral Equations (IE) method

formulation [16, 26, 27, 28] of the low frequency (LF) EM problem is presented. This formulation

is numerically convenient for evaluating the exposure of the human body to the EM fields. Indeed,35

anatomical models of the human body are usually provided with a voxel-based discretization [29, 30]

(cf. Fig. 1), originating directly from MRI scans or other tomographic acquisitions. The proposed

formulation takes advantage of the regularity of this discretization by reducing the memory require-

ment and speeding-up the computational procedure. Moreover, it exploits recent advancements in
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Figure 1: Voxel-based anatomical human model Duke from the Virtual Population [30] discretized with a mesh of 2

mm. Each color identifies a different biological tissue.

the solution of IE by means of iterative preconditioned solvers [31, 32].40

On the other hand, two ad hoc pMOR schemes are presented. One dealing with problems in

which the frequency of the EM radiation is a varying parameter, the other one for problems in which

the resistivity of the biological tissues is affected by uncertainty. Despite of the different nature

of the selected parameters, both can take advantage of the adoption of a pMOR scheme, which

significantly reduces the computational complexity of the analysis of human body exposure to the45

EM fields, opening to the possibility of performing it on desktop computers.

The proposed formulation and the pMOR schemes are applied to a couple of realistic model

problems: the evaluation of the peripheral nerve stimulation (PNS) due to the gradient coils (GCs)

of an MRI scanner during a clinical examination (the signals have a frequency range up to some tens

of kilohertz); and the assessment of the exposure to environmental fields at 50 Hz of live-line workers50

with uncertain properties of the biological tissues. In the first problem, a modified version of the

anatomical human model Yoon-Sun from the Virtual Population with a hip, a knee, and a shoulder

implant is considered. In this application, the solution of many problems at different frequencies is
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imposed by the skin effect that takes place in the metallic implants at the considered frequencies.

On the other hand, the human model Duke from the Virtual Population (cf. Fig. 1) is used for55

the second problem, in which the MC method is applied to the pMOR scheme in order to estimate

the probability distribution of the peak of the induced electric field. In both cases, the models are

discretized with a 2 mm mesh, thus resulting in large scale computational problems (about 6.8·106

voxels in the first case and 8.4·106).

The adopted formulation and its numerical modelling are presented in Section 2, whereas the60

pMOR schemes are introduced in Section 3. Finally, in Section 4, the presented numerical methods

are applied to the realistic model problems and the results are discussed.

2. Numerical Method

In this section, the theoretical background of the proposed numerical method is described by

taking as example the human body model introduced in the previous section. First, in Section 2.1,65

the formulation is shortly described. Then, in Section 2.2, the discretization procedure is performed

according to [33, 31, 32] in order to exploit the translational invariant property of the integral

kernel, drastically speeding-up the simulation and dramatically reducing the memory requirement.

Then, in Section 2.3, a solution technique based on an Algebraic Multigrid (AMG) preconditioner

is presented, leading to a significant reduction of the overall computational cost required by human-70

body EM simulations [32, 34].

2.1. Formulation

First, the following well-known equation, where all field quantities are assumed to be phasors, is

introduced [35]:

E(r) = −iωA(r)−∇ϕ(r) + Eext(r), (1)

where E is the electric field, A is the magnetic vector potential, and ϕ is the scalar electric potential.

Eext is the incident external field produced by the unperturbed source, r is the position, i is the

imaginary unit, and ω is the angular frequency. The forcing term Eext is proportional to the magnetic

vector potential of the source, Aext, as highlighted in the following Section 3.1. Vector potential in

(1) is given by its integral expression, i.e.

A(r) = µ0

∫
Ω

J(r′)g(r, r′)dΩ, (2)

where J is the conduction current density vector, r′ is the integration point, and g(r, r′) is the

Green’s function of vacuum [36, 35]. Ohm’s law relation is then introduced:

E(r) = ρ(r)J(r), with r ∈ Ω, (3)

where ρ is the electric resistivity.
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Coupling (1) with (3), one obtains the equation where J and ϕ are the problem unknowns and

A depends on J through (2):

ρ(r)J(r) + iωA(r) +∇ϕ(r) = Eext(r). (4)

For the sake of simplicity, since we are focusing on low/medium frequency applications, the

conduction current density is considered divergence free, thus (4) is complemented by

∇ · J = 0. (5)

Equations (1)–(5) must now be discretized. In this work, with the aim of exploiting the trans-

lational invariant property of Green’s function, the conductive domain (i.e. the human body) is75

discretized by means of a structured mesh consisting of regular hexahedral elements (i.e. voxels).

Indeed, when the human model is obtained starting from the segmentation of a tomography, it is

usually directly provided in a voxel-based format.

Then, the current density vector is expanded by using vector shape functions related to the

internal faces of the mesh (Nf ), i.e.

J(r) =

Nf∑
k=1

wk(r)jk, (6)

where wk is the kth vector shape function and jk is the flux of J through the kth internal face of the

mesh. Unknowns jk, with k = 1, · · · , Nf , are stored in the array j. The electric scalar potential is80

also expanded as in [37] by using piece-wise constant basis functions. Therefore, the array Φ of size

Nv (where Nv is the number of human-body voxels) is also introduced, which stores the unknowns

related to ϕ.

By using (6) and exploiting the Galerkin scheme, the continuum equations (1)–(5) are discretized

and the following system of equations is obtained:R + iωL G

GT 0

 j

Φ

 =

eext

jext

 , (7)

where R and L are the (sparse) resistance and (dense) inductance matrices, respectively, whose

coefficients are given in [32]. In (7), G is the volumes–faces incidence matrix whereas eext is the85

array corresponding to the incident external electric field, and jext is the array corresponding to

injected currents (which can be used to model human model connections to electrodes injecting

positive or negative currents). For the sake of clarity, it is worth noting that the problem described

by (7) can be seen as a fully coupled electric circuit with a very large number of components and

where voxels are the circuit nodes, while the internal faces of the mesh (which connect two voxels)90

are the circuit branches [35]. Thus, G is the incidence matrix of the equivalent circuit.

System (7) can be theoretically solved by means of direct or preconditioned–iterative solvers.

However, as previously discussed in Section 1, the size of the problem (i.e. the number of unknowns)
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is typically very large for human body models (several millions of unknowns), making the compu-

tational cost of the problem possibly prohibitive, both in terms of computation time and memory95

requirement. This is mostly due to matrix L, which is dense and its storage has a O(N2
f ) complexity.

Thus, the following sections show how to exploit the regularity of the mesh in order to drastically

reduce the computational cost required for the solution of (7).

2.2. Data-Sparse Representation of Matrix L

One of the major computational bottlenecks in solving (7) is the memory required for the storage100

of the dense matrix L, which grows quadratically with the number of unknowns [26]. However,

thanks to its dependence on Green’s function, matrix L has a hierarchical off-diagonal low-rank

(HODLR) structure, which can be exploited by using data-sparse approximation techniques as done

by many works in the literature where, e.g., Hierarchical Matrices coupled with cross approximation

[38, 39, 26], Fast Multiple Method [40], or other techniques [41] are used. These approaches are105

powerful computational tools which, in general, may allow for extremely reducing the computational

cost required for the storage of L and they also speed-up algebraic operations. However, these

approaches are in general intrusive and mostly based on matrix compression (therefore introducing

unavoidable, hopefully small, approximations), which usually requires some expertise from the user

who a priori has to choose suitable values for the compression tolerances [42, 26, 38].110

In this work, since a regular mesh consisting of all equal voxels is used, matrix L possesses further

useful mathematical properties which can be exploited. Namely, as discussed in [42], matrix L can

be embedded into a Block Toeplitz matrix with Toeplitz Blocks (BTTB); then, such BTTB matrix

can be represented by means of a circulant tensor which, roughly, allows reducing the memory

requirement to O(N) and the matrix-vector products to O(Nlog(N)) by using the Fast Fourier115

Transform (FFT) and its inverse (IFFT) [27]. This numerical approach allows for drastically reducing

the computational burden due to the dense matrix L and, contrary to other methods, it does

not introduce any approximation since no data-compression is applied and therefore mutual EM

interactions are exactly considered.

By using such an approach, the computational issues due to the full matrix L are solved. However,120

since the system of equations (7) has a large dimension and matrix L has been replaced by a

mathematical operator, an efficient iterative solver must be used. Such a solver must not require

to explicitly store system (7); instead it must exploit an equivalent mathematical operator which

performs matrix-vector products such as GMRES.

To this aim, it is of fundamental importance to adopt a proper preconditioner to reduce the125

number of required iterations. In this regard, the following section presents an efficient preconditioner

which allows for further reducing the computational cost required by solving (7).
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2.3. Algebraic Multigrid Preconditioner

As previously discussed, solving (7) by means of an iterative solver like GMRES may require a

prohibitive number of iterations if no preconditioning is adopted. In [31], where a similar system

of equations is considered, a preconditioner is constructed by replacing the matrix block (1,1) of

(7) with its diagonal and by exploiting the Schur complement technique. This preconditioning

approach is very efficient (i.e., a limited number of iterations are required by GMRES to reach the

convergence). However, when the Schur complement is performed at each preconditioned–GMRES

iteration, the following system of equations must be solved:

{GT [diag(R + iωL)]−1G}a = b, (8)

where a and b are arrays of size equal to the number of voxels.

Since G is very sparse and the inverse of the diagonal of R+ iωL is used, the resulting system (8)130

is also very sparse. However, as already discussed, the number of voxels in the human body model

can be very large (several millions), therefore solving (8) can be computationally demanding if a

direct solver is used. Fortunately, the structure of (8) is very similar to the one resulting from finite

difference methods and therefore it can be efficiently solved by means of an Algebraic MultiGrid

(AMG) solver [43, 34]. One of the main advantage of AMG is that it requires a reduced memory135

since it does not require to factorize the whole system matrix. Moreover, solving (8) by means of

AMG requires two subsequent steps, i.e., 1) a pre-processing of the system matrix is performed in

order to construct the hierarchical multigrid levels and, 2) the system is solved by exploiting such

AMG levels and the hierarchical representation of (8). Since, in the proposed method, AMG is used

as preconditioner for solving (7), system (8) must be solved several times (as many as the number140

of iterations required by GMRES to converge) for different b but the left-hand-side is always the

same. Therefore, the construction of the multigrid levels (step 1) can be performed only once and

then, at each GMRES iteration, system (8) is solved by exploiting the same multigrid construction,

therefore significantly reducing the overall computational cost.

3. (Parametric) Model Order Reduction145

In the section above, some numerical strategies have been proposed in order to efficiently solve a

single large scale problem (7). However, in several applications [18, 20, 22, 23, 24], (7) must be solved

several times for several frequency values or by varying the resistivity of human-body tissues and

organs. All these modifications affect the terms in the matrix of (7). For instance, if time-domain

analyses must be performed, the FFT and IFFT can be used in order to move the problem from time150

to frequency and then from frequency to time; thus, several frequency domain simulations must be

performed. Another case of interest is when UQ or sensitivity analyses are performed, and therefore
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several simulations with different resistivity distributions are required in the context of, e.g., a MC

simulation.

Although the computational cost required to solve the single problem (7) has been significantly155

reduced thanks to the techniques presented in the previous section, solving (7) several times can

be computationally demanding since hundreds or even tens of thousands simulations are typically

required when time domain simulations or UQ are preformed [44].

To solve this problem, pMOR techniques can be exploited in order to construct an equivalent

parametric Reduced Order Model (pROM) of (7), whose solution can be performed very efficiently160

with a reduced memory requirement and very short computation time [45, 46].

In the following sections, a MOR algorithm based on Proper Orthogonal Decomposition (POD)

[47], and which exploits the solution strategy techniques presented in Section 2.2, is presented. First,

the case of frequency sweep simulations is considered, therefore having the frequency as parameter

(which is required when, e.g., time-domain analyses are performed). Then, the case of parametric165

resistivity is considered, which is of interest when UQ with random material properties is required.

3.1. Transient/Frequency Analyses

The starting point to create an EM pROM of the human body having the frequency as parameter

is (7). However, before proceeding, it is useful to represent the external field as

Eext(r) = −iωAext(r), (9)

where Aext is the incident (external) magnetic vector potential generated by the source coil system

(e.g., the GCs system of an MRI scanner). Thus, in order to make the frequency dependence explicit,

it is useful to represent (7) as R + iωL G

GT 0

 j

Φ

 =

−iωaext

jext

 , (10)

where aext is the array corresponding to Aext.

The aim is to find an equivalent pROM of (10) in a frequency range of interest, i.e. f ∈

[fmin, fmax]. To do that, the iterative procedure reported in Algorithm 1 is used. Basically, such170

procedure selects some characteristic values of the frequency in the range f ∈ [fmin, fmax], solves

the problem for such frequency values and uses the corresponding solution to project the full order

problem into a reduced base.

Thus, according to Algorithm 1, the first frequency value for which (10) is solved is selected as

the central value of the frequency range of interest, i.e. f = fmin+fmax

2 . Then, the desired tolerance175

value, η, for the accuracy of the pROM with respect to the right-hand-side of (10) is also selected.

Such value is typically chosen as η = 10−4.
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Algorithm 1 pMOR Algorithm

Input: Matrices G and R. Matrix L represented by the equivalent circulant tensor. Arrays aext and jext. The

frequency range for the pROM, i.e. f = [fmin, fmax]

Set ω = 2π fmin+fmax
2

// 0

Set res? = +∞

Set Nrand (e.g. Nrand = 20)

Set a desired value of η (e.g. η = 10−4)

while res? > η do

Find the solution x of (10) // 1

Update the orthonormal basis // 2

Generate/Update the reduced order model // 3

Generate Nrand random values of f ∈ [fmin, fmax] // 4

for h = 1, · · · , Nrand do

Select the hth random frequency

Find the solution x̂ of the reduced order problem // 5

Evaluate the residual, res, with respect the full order problem // 6

end for

Find the frequency value (f?) generated at step 4 which maximizes the residual and assign the corresponding

maximum residual to res?. The new angular frequency used for the next iteration is ω = 2πf? // 7

end while

Output: Reduced order model and the projection matrix

Then, at step 1 of Algorithm 1, the full order problem (10) is solved for ω = 2πf and the solution

x =
[
j,Φ

]T
, is obtained by using the techniques described in Section 2.2 and Section 2.3.

At step 2 of Algorithm 1, using the solution x found at the previous step, the projection matrix

V is generated/updated by applying a Gram-Schmidt Orthogonalization (GSO), i.e.,

V = GSO([V,x]). (11)

It is worth noting that the equation above should be intended in an algorithmic sense, i.e. the new180

projection matrix V (left-hand-side of (11)) is updated by adding to the old V (right-hand-side of

(11)) a new column (i.e. x) and applying the GSO to the resulting matrix. At iteration one of the

Algorithm, since V has not been created yet, V at the right-hand-side of (11) is obviously taken as

the empty matrix.

Then, at step 3 of Algorithm 1, an attempt of the pROM is obtained by using the projection

matrix found at the previous step, i.e.

R̂ = V∗

 R G

GT 0

V, L̂ = V∗

L 0

0 0

V, (12)

âext = V∗

aext

0

 , ĵext = V∗

 0

jext

 , (13)
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where R̂ and L̂ are the reduced order matrices and âext and ĵext are the reduced order right-hand-185

side arrays. Symbol ∗ indicates the conjugate transpose. It is worth noting that, at each iteration,

the size of the reduced matrices and arrays increases by one since the number of columns of V has

increased by one at step 2 of the algorithm.

In (12), a matrix-matrix product involving the dense matrix L is required. However, such product

can be efficiently performed by exploiting the equivalent circulant tensor of L, thus it is not required190

to actually store and generate the full matrix L (which would otherwise require a prohibitive com-

putational cost for its storage and for the algebraic operations).

After having created the provisional pROM, its accuracy must be tested. Therefore, at step 4

of Algorithm 1, Nrand frequencies in the range [fmin, fmax] are selected (with, e.g., Nrand = 20).

Then, at step 5 of Algorithm 1, the provisional pROM is used to solve the problem for each random

frequency, i.e.,

x̂ = [R̂ + iωL̂]\[̂jext − iωâext] (14)

where x̂ is the solution of the pROM. Then, the approximate solution of the full order model, x̃, is

obtained by using V:

x̃ = Vx̂, (15)

which means that x̃ is obtained as a linear combination of the other solutions found at step 1 of

Algorithm 1.

At step 6 of Algorithm 1, the corresponding residual, res, is evaluated, i.e.,

res =

∥∥∥∥∥∥
R + iωL G

GT 0

 [x̃]−

−iωaext

jext

∥∥∥∥∥∥ . (16)

Finally, at step 7 of Algorithm 1, the maximum residual, res?, and the corresponding frequency195

f? are selected. If res? is greater than the prescribed tolerance η, then a new iteration of the

algorithm is performed by selecting ω = 2πf?. Instead, if res? < η, the algorithm stops and the

pROM is created.

It is worth noting that the pMOR algorithm requires the solution the full order model, i.e. (10),

as many times as the number of iterations required by Algorithm 1 to converge. However, as shown200

in the Results section, for the target problem of this paper a limited number of iterations is generally

required (in the order of tens). Then, the pMOR can be used to solve the frequency domain problem

for a generic frequency in the range [fmin, fmax] with a truly negligible computational cost. Thus,

frequency-sweep simulations with tens of thousands (or even more) frequency values can be solved

very efficiently with a limited overall computational cost, i.e. the one required to generate the pROM.205

Indeed, the dimension of the pROM is equal to the number of iterations required by Algorithm 1

to reach the convergence (generally in the order of tens) and the solution of pMOR (i.e., (14)) is

therefore very fast (less than one second).
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3.2. Uncertainty Quantification

In the previous section the frequency has been chosen as parameter of the problem. Instead, in

this section, the resistivity of the biological tissues are considered as the parameters of the problem

(for each biological tissue a resistivity value is assigned). For each biological tissue, an independent

parameter is considered. Therefore, in this case we haveNp parameters, whereNp is the number of bi-

ological tissue where the resistivity is considered as a varying quantity. Namely, ρk ∈ [ρk,min, ρk,max],

with k = 1, · · · , Np, are the problem parameters (equivalently, the conductivity can be considered

in place of the resistivity). Thus, in this case, the starting parametric problem is still (7), where the

resistance matrix is now given by

R = R0 +

Np∑
k=1

ρkRk, (17)

where R0 is the resistance matrix related to the biological tissues where the resistivity is considered210

as a fixed quantity (the resistivity is assigned to its nominal value in each biological tissue where

such parameter is considered fixed, i.e. a non-varying quantity, and zero elsewhere), whereas Rk is

the (unitary) resistance matrix related to the kth domain (i.e., the resistivity is taken equal to 1 in

the kth domain and zero elsewhere).

Then, the pROM can be constructed by using a procedure equivalent to the one reported in the215

previous section where the frequency was considered as varying parameter.

Therefore, a pROM is iteratively constructed as in (12)–(13), with the difference that several

reduced resistance matrices are obtained, i.e.,

R̂0 = V∗

R0 G

GT 0

V, R̂k = V∗

Rk 0

0 0

V, (18)

with k = 1, · · · , Np, and the solution of the pROM is obtained as

x̂ = [R̂0 +

Np∑
k=1

ρkR̂k + iωL̂]\[̂jext − iωâext]. (19)

With the above considerations, it is possible to construct a pMOR of the problem having the

resistivity of several tissues as varying parameters. However, a numerical issue concerning the stop

criterion for construction of the pROM must be discussed.

Indeed, unfortunately, unknowns j and Φ vary in a very different way with the variation of220

the resistivity parameters. This fact leads to a large number of iterations required by pMOR to

converge and, possibly, the resulting pROM can be ill-conditioned. To solve this numerical problem,

one should note that finding the scalar electric potential, i.e. Φ, is not actually important in practice

since the total electric field in any point of the space only depends on j.

Having in mind this considerations, a different stop criterion which only tests the accuracy of

the current array j obtained from the pMOR can be adopted. Thus, the main idea is to replace (16)
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with the following

res =

∥∥∥∥∥∥
CT 0

0 1

R + iωL G

GT 0

 [x̃]−

−iωaext

jext

∥∥∥∥∥∥ , (20)

where, with respect to (16), a matrix operator has been applied to the left. Such a matrix operator

is made by the curl faces–edges incidence matrix C, which is the algebraic equivalent of the curl

operator and satisfies the following property

CTG = 0. (21)

Therefore, as desired, the effect of Φ on res is eliminated. To give a physical interpretation, by225

applying the matrix operator C, the residual (20) checks the accuracy of the pMOR by evaluating

the time derivative of the incident magnetic field, i.e. iωCTaext.

By following the above discussion, the number of iterations required by the pMOR algorithm to

converge, and therefore also the size of the pROM, is significantly reduced and the resulting model

is well-conditioned.230

4. Results

In this section, the proposed numerical approach is applied to two realistic problems:

1. the evaluation of the PNS due to the low-frequency magnetic field generated by the GCs of an

MRI scanner during a clinical examination;

2. the assessment of the exposure to environmental fields of live-line workers with uncertain235

resistivity of the biological tissues.

In the first case, a time-domain problem is solved by superposing the results at different frequencies

in order to follow the trend of the electric field induced within the biological tissues of the patient;

therefore, the MOR scheme proposed in Section 3.1 is used. The peak of the induced electric field

in each voxel is the dosimetric quantity to be compared with the guidelines in this application.240

Instead, for the second case, the MOR scheme proposed in Section 3.2 is used, since the lack of

knowledge on the resistivity of the biological tissues suggests their modelling as random variables.

The dosimetric quantity of this problem is the maximum of the electric field magnitude, conveniently

filtered in order to remove possible numerical outliers [8]. Since some input parameters are modelled

as random variables, the output of the problem is a random variable as well, estimated through245

the MC method applied to the pROM. Sample MATLAB implementation of the method is made

publicly available at https://github.com/UniPD-DII-ETCOMP/BioMOR.
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Figure 2: Magnitude of the electric field distributions computed by solving the complete problems for a given selection

of the parameters. On the left (a), the solution to the PNS problem in presence of orthopaedical implants at the

frequency of 5 kHz; on the right (b), the solution to the exposure problem with nominal resistivities.

4.1. PNS due to the GCs of an MRI scanner

The switched magnetic field generated by the GCs of an MRI scanner can induced PNS in the

patient [48]. Thus, the eddy currents induced within the biological tissues must be monitored by250

means of numerical simulations. In the specific case of patients with metallic orthopaedic implants,

the distribution of the eddy currents in the biological tissues could be altered by the more relevant

eddy currents induced within the metallic parts of the implant.

In order to assess the induction of PNS in implanted patients, the anatomical human model

Yoon-Sun from the Virtual Population has been modified through a virtual surgery to include a hip,255

a knee, and a shoulder implant. Since the three implants are sufficiently distant from each other

to not cause EM interactions, a single model with all the three implants is simulated here. The

magnitude of the electric field induced in the model by a uniform harmonic magnetic field of 1 mT

at the frequency 5 kHz with direction perpendicular to the transversal plane is shown in Fig. 2a.

Since the GCs are supplied according to particular pulse sequences, in order to assess the induc-260

tion of PNS the time evolution of the induced electric field must be taken into account. Instead of

solving the EM problem in the time-domain, the time evolution can be monitored by solving the

problem at different frequencies and then combining the results.

The GCs supply waveforms contain harmonics up to some tens of kilohertz, which fall in a

linearity range for the low conductive biological tissues, but are high enough to induce the skin265
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Figure 3: Waveforms of: first row, the magnetic field produced by the GCs; second row, the electric field recovered

with 16 harmonics; third row, the electric field recovered with 128 harmonics. The first column is about a triangular

supply, whereas the second one is about a trapezoidal supply.

effect in the metallic implants. Thus, the computation of the time evolution can take advantage of

the pROM for frequency sweep described in Section 3.1.

The considered model discretized by a structured mesh with 2 mm × 2 mm × 2 mm voxels has

a computational domain of about 6.8 · 106 voxels, which leads to about 27·106 degrees of freedom

(DoF). A complete simulation of this problem at a certain frequency with the proposed numerical270

formulation requires about 30 minutes on a machine with 2 processors Intel Xeon CPU E5-2680 v2

@ 2.80 GHz and 128 GB of RAM.

As can be seen from the estimated trends reported in Fig. 3 for the electric field in a voxel

of tissue near the hip implant, the number of frequencies required to recover the time evolution

depends on the supplied waveform. It can vary from 16 harmonics for the triangular signal up to275

128 harmonics for the trapezoidal signal. Since each harmonic requires a complete simulation, by

using the full order model (FOM), 144 simulations of about 30 minutes each are needed to recover

the two trends reported in Fig. 3.

On the other hand, the described MOR scheme in the range [1 Hz, 100 kHz] with a tolerance

η = 10−4 leads to a pROM with only 15 DoFs, whose computations requires the solution of just 15280

complete problems. The successive solution of the pROM is almost instantaneous, so the compu-

tational time needed to estimate the time evolution of the electric field is less than one-hundredth

the times needed using the FOM. Moreover, with a negligible computational cost, other realistic

pulse sequences can be simulated. Quantitative details about the FOM and the pROM for the PNS

problem are collected in Table 1.285
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Table 1: Computational data for a single solution (PNS case).

DoFs Time (s) Memory (GB)

FOM ∼ 27 · 106 ∼ 1800 ∼ 8.5

pROM 15 � 1 � 1

Table 2: Computational data for a single solution (UQ case).

DoFs Time (s) Memory (GB)

FOM ∼ 33 · 106 ∼ 2200 ∼ 10.4

pROM 173 � 1 � 1

4.2. UQ for the Human Body Exposure to Environmental Fields

In this case, the assessment of the exposure to environmental EM fields of live-line workers

with uncertain properties of the biological tissues is considered. In particular, the exposure to the

magnetic field generated by a 380 kV overhead line at 50 Hz when the line is close to the chest of

the worker is analysed (cf. case A.2 investigated in [9]).290

The human body model considered in this case consists of about 8.4·106 voxels, leading to

about 24·106 internal faces. The generation of the dense matrix L would require a prohibitive

memory, i.e. about 1500 TB. Instead, by following the approach of Section 2.2, only about 5 GB

are required to store the circulant tensor corresponding to matrix L. As previously discussed, the

MOR scheme proposed in Section 3.2 has been adopted by setting the desired tolerance η equal to295

10−4. In this analysis, the resistivity of the 30 biological tissues which exhibit the highest electric

field in a simulation performed with the nominal value of the parameters have been considered as

30 independent parameters, with resistivity varying in the range ±20% with respect to the nominal

value. Such MOR scheme has required 173 iterations, therefore leading to a pROM of size 173.

Table 2 shows the computational data required for the solution of the FOM and the pROM.300

As can be seen, the computational complexity required by the pROM is drastically reduced with

respect to the one required by the FOM.

Thus, thanks to the pROM, a UQ analysis by means of MC has been possible. Such an analysis

has been repeated by considering 5, 10, 20, and 30 random resistivities varying with a uniform

probability distribution in the range ±20% with respect their nominal value. The four MC simula-305

tions have been performed with 10000 evaluations. It is worth noting that using the FOM in MC

would have required 255 days (i.e., 2200×10000 s), thus leading to a prohibitive computation time.

Instead, by using the pROM, the MC simulation has required only some hours.

The magnitude of the electric field distribution computed with the nominal resistivities can be

found in Fig. 2b. The results of the UQ analysis for 5, 10, and 20 parameters are reported in Fig. 4310
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Figure 4: Relative frequency histograms of the maximum electric field magnitude in the whole body (first column)

and in the central nervous system (CNS, second column), estimated by the filter described in [8]. The histograms

are produced by a MC method applied on the pROM obtained by MOR executed on 5 tissues (first row), 10 tissues

(second row) and 20 tissues (third row). The resistivity of the selected tissues is varied in the range ±20% with respect

to their nominal value.

in terms of the probability density function of the maximum electric field magnitude in the whole

body and in the central nervous system (CNS), estimated by the filter described in [8]. As can

be seen, the results obtained by considering 10 and 20 parameters are very similar, and the same

consideration holds for 30 parameters, although they are not reported for the sake of conciseness.

On the other hand, the results provided by the pROM constructed on top of just 5 parameters leads315

to a significantly different uncertainty propagation, especially for the peak in the CNS.

In summary, the overall analysis has required 173 solutions of the FOM (to construct the pROM)

and then 10000 solutions of the pROM for the MC analysis.

5. Conclusions

An ad hoc computational method is proposed to reduce the computational complexity arising320

from the repeated solution of large scale problems involving the interaction of electromagnetic fields

with the human body. The proposed tool is based on a volume integral equation method for vox-

elized structures and it takes advantage of the regularity of the discretization by speeding-up the

computational procedure via the Fast Fourier Transform and its inverse. Moreover, it also exploits

recent advantages in the solution of Integral Equations by means of iterative preconditioned solvers.325

Two (parametric) Model Order Reduction schemes are then proposed where the frequency or the

resistivity of the biological tissues are considered as varying parameters. The proposed tool makes

analyses which otherwise would require a prohibitive computational cost affordable, such as time

domain studies and uncertainty quantification in biomedical applications. The adopted formulation

is focused on low frequency problems, such as the ones considered in the result section: i.e., the330
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evaluation of the Peripheral Nerve Stimulation due to the low-frequency magnetic field generated

by the Gradient Coils of an MRI scanner during clinical examinations and the assessment of the ex-

posure to environmental fields of live-line workers with uncertain resistivity of the biological tissues.

However, the proposed approach could be also adopted for high frequency problems, like problems

related to the radiofrequency field of a magnetic resonance imaging scanner, starting from other335

formulations suited for this kind problems [33, 49].
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F. Di Gennaro, B. Lloyd, E. Cherubini, D. Szczerba, W. Kainz, N. Kuster, Development of a450

new generation of high-resolution anatomical models for medical device evaluation: the Virtual

Population 3.0, Physics in Medicine and Biology 59 (18) (2014) 5287–5303. doi:10.1088/

0031-9155/59/18/5287.

[31] A. C. Yucel, I. P. Georgakis, A. G. Polimeridis, H. Bağcı, J. K. White, VoxHenry: FFT-
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