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Abstract
Correlations play a significant role in data analysis and the evaluation and expression of the
uncertainty, yet estimating them is often difficult. This paper provides examples of how to
infer the measurand value, given only the uncertainties and correlation ranges of the
measurement results. The least informative data-distribution is not Gaussian, but the marginal
distributions are. Explicit results are given in the case of a data pair, where the inferred
correlation coefficient is the midpoint of the given range.

Keywords: probability theory, inference methods, measurement and error theory, data
analysis, correlations

(Some figures may appear in colour only in the online journal)

1. Introduction

Correlations play an important role in data analysis and evalu-
ating and expressing the uncertainty [1–7]. For instance, when
averaging correlated data with unequal uncertainties, contrary
to what might be expected, both large positive and negative
correlations reduce the uncertainty [8]. Moreover, when the
correlation coefficient tends to one, the weighted mean lies
outside the data interval and the associated uncertainty tends
to zero.

Estimating the correlation coefficients of literature data can
be difficult or impossible [4, 5]. The authors do not always give
them, nor the information needed for an estimate. When data
are subject to accounting identities, which express a datum
as the sum of the other, or they have specified marginals
correlations considered in [9, 10].

Here, we consider the evaluation of the least-informative
distribution and correlation coefficient by considering a data
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pair, where no more information is available than the standard
uncertainties and the range of the correlation coefficient. We
determine the sought distribution by ensuring that, subject to
any contextual information, it is minimally informative. Only
in this way can we be sure that the distribution and correlation
coefficient take all the information available into account, but
no uncontrolled assumptions have been introduced.

In the discrete case, the maximum entropy principle, which
minimizes the Shannon information encoded in a distribution,
solves the problem. For continuous distributions the Shan-
non information is meaningless. In this case, we minimize
the Kullback–Liebler divergence, which measures the differ-
ence between the sought distribution and a distribution which
is assumed to encode the absence of testable information
[11, 12]. A concise introduction to classical (and quantum)
information theory is in [13].

In section 2, we set the problem for two variables and derive
the distribution and correlation coefficient consistent with the
contextual information. The following section gives the mea-
surand posterior-distribution. Next, in sections 4 and 5, we
present the posterior inference of the measurand and its stan-
dard uncertainty and discuss from where constraints on the
correlation arise. The general case of more than two variables
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is considered in section 6. Section 7 provides some application
examples.

2. Data likelihood

2.1. Problem statement

Let x1 and x2 be two measurement results having variance σ2
1

and σ2
2, but unknown correlation coefficient ρ. The interval

of the possible ρ values might be known to be smaller than
the default [−1, 1] one, as will be illustrated in section 5 and
examples. Since shifted and scaled variables have the same ρ
value, we can assume a zero mean and unit variance without
loss of generality. The challenge is to find the least informative
sampling distribution and ρ value consistent with ρ ∈ [ρ1, ρ2].

2.2. Solution

Since, by marginalization, the sought sampling distribution of
the data is

P(x1, x2) =
∫ ρ2

ρ1

p(x1, x2, ρ) dρ, (1)

the problem is to find the joint distribution of the data and cor-
relation coefficient, p(x1, x2, ρ), given 〈x1〉 = 〈x2〉 = 0, σ1 =
σ2 = 1, and ρ ∈ [ρ1, ρ2]. Also, p(x1, x2, ρ) can be written in
terms of conditional distributions as

p(x1, x2, ρ) = L(x1, x2|ρ)π(ρ), (2)

where L(x1, x2|ρ) is the data likelihood (given the mean, vari-
ance, and correlation coefficient) and π(ρ) is the coefficient
distribution, given ρ ∈ [ρ1, ρ2].

The (x1, x2) distribution having the minimum Kull-
back–Liebler divergence from the uniform one and zero mean,
unit variance, and specified ρ value,

L(x1, x2|ρ) =
1

2π
√

1 − ρ2
e
−

x2
1+x2

2−ρx1x2
2(1−ρ2) . (3)

is binormal. The distribution of ρ ∈ [ρ1, ρ2],

π(ρ) =
if(ρ1 < ρ < ρ2)

ρ2 − ρ1
, (4)

where if(.) is one if its argument is true and zero otherwise, fol-
lows trivially from minimizing the divergence from a uniform
distribution.

Eventually, by using (2)–(4) in (1), the sought distribution
is

P(x1, x2) =
1

ρ2 − ρ1

∫ ρ2

ρ1

e
−

x2
1+x2

2−2ρx1x2
2(1−ρ2)

2π
√

1 − ρ2
dρ. (5)

Figure 1 shows its contour plot when ρ1 = 0 and ρ2 = 1.
The least-informative correlation coefficient of the data,

ρ12 = (ρ1 + ρ2)/2, (6)

is obtained from (2) by carrying out the relevant integrations.
Also, the marginal distributions of the data are normal, with
zero mean and unit variance.

Figure 1. Contour plot of the distribution of two correlated data
having zero mean, unit variance, and (unknown) ρ ∈ [0, 1].

The equation (6) can be generalized to the case where more
detailed measurable information on ρ is available and, conse-
quently, π(ρ) is any distribution. By proceeding as before, we
still have 〈x1〉 = 〈x2〉 = 0, σ2

1 = σ2
2 = 1. Furthermore, ρ12 =

〈ρ〉π , where the average 〈.〉π is taken with respect to π(ρ).

3. Posterior distribution of the measurand

Let us consider a data pair having the same mean, the measur-
and μ, and variance-covariance matrix

Σ =

(
a2 aρ
aρ 1

)
σ2

2, (7)

where 0 � a2 � 1 is the variances’ ratio. Without loss of gen-
erality, we can set x1 = 0 and x2 = 1, which can be done by
shifting and rescaling the data. Therefore, σ1 = aσ2 and σ2

are the fractional standard uncertainties of the most and least
accurate datum, respectively, relative to their difference. Also,
if σ2 � 1, the data are inconsistent.

3.1. Fixed correlation

If ρ is known, the least-informative distribution and likelihood
of the reduced data x1 = 0 and x2 = 1 is

L(x|μ) =
e−xTΣ−1x/2

2π
√
|Σ|

, (8)

where x = (−μ, 1 − μ)T and |.| indicates the determinant.
To take informed decisions, we need the posterior distribu-

tion of the measurand values. By mapping the prior informa-
tion on μ into a uniform distribution, as its support tends to the
reals, the sought posterior converges to a normal one. Hence,
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Figure 2. Representation of the posterior probability densities (9) of the measurand values—horizontal sections of the density plots—as it
varies with increasing uncertainty ratio a, when σ2 = 1, ρ ∈ [–1, 1] (left), ρ ∈ [0, 1] (center), and ρ ∈ [–1, 0] (right). The data have been
normalized so that x1 = 0 ± a and x2 = 1 ± 1. The gray contour-lines are the loci of constant density-values. The white lines are the
posterior mean of μ. The white area is where the density extends beyond the plot range; in fact, it goes to the infinite.

μ ∼ N(μ|μ0, σ2
μ), where the posterior mean and variance, μ0

and σ2
μ, are given in section 4.1.

3.2. Unknown correlation

If ρ ∈ [ρ1, ρ2], by the same reasoning that delivered us to (3),
the least-informative distribution and likelihood of the reduced
data x1 = 0 and x2 = 1 is

L(x|μ) =
1

ρ2 − ρ1

∫ ρ2

ρ1

e−xTΣ−1x/2

2π
√
|Σ|

dρ. (9)

If we give to the μ values a sequence uniform prior distribution
having increasingly large supports, the posterior one converges
to μ ∼ L(x|μ)/Z, where the normalization constant Z is given
in the appendix.

Figure 2 shows the posterior distribution of the measur-
and for increasing uncertainty ratio, when σ2 = 1, ρ ∈ [–1,
1] (left), ρ ∈ [0, 1] (center), and ρ ∈ [–1, 0] (right). If the data
have different uncertainties, both positive and negative correla-
tions shrink the mean to the most accurate datum, while reduc-
ing the uncertainty. Also, unless ρ < 0, the posterior mean
approaches the most accurate datum from the outside of the
data range.

4. Posterior mean and variance

4.1. Known correlation

If ρ is known in advance, the posterior mean,

μ0 =
a(a − ρ)

1 − 2aρ+ a2
, (10)

and variance,

σ2
μ =

(1 − ρ2)σ2
1

1 − 2aρ+ a2
, (11)

of the measurand equal the maximum likelihood estimates [8].

4.2. Unknown correlation

When ρ is unknown, the analytic expressions of the posterior
mean and variance of the measurand (given in the appendix)
are too complex to give useful insights. They differ from (10)
and (11) and from the maximum likelihood estimates. This dif-
ference is not surprising. The maximum likelihood estimates
are the optimal compressions of the measurement results; the
posterior mean and variance are the updated expectation and
uncertainty of the measurand.

We give some asymptotic behavior that might help to check
the correctness of (A.2) and (A.3). If the uncertainty ratio tends
to one, the posterior mean is the data midpoint. If it tends to
zero, the posterior mean,

lim
a→0

μ0 = −(ρ1 + ρ2)a/2 (12)

approaches the most accurate datum from above or below
according to the midpoint of the interval of the possible ρ
values. The posterior variance approaches

lim
a→0

σ2
μ = (1 − ρ1ρ2)σ2

1. (13)

It is worth noting that when ρ1 = ρ2 = ρ, (12) and (13) are
the same limits as per (10) and (11). Eventually, if σ2 	 1 the
posterior mean is

lim
σ2→∞

μ0 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1 + a −
√

1 + a2

2
√

1 + a2
if ρ ∈ [0, 1]

0 if ρ ∈ [−1, 1]

−1 − a −
√

1 + a2

2
√

1 + a2
if ρ ∈ [−1, 0]

which, when a → 0, repeats (12).
Figure 3 compares the posterior mean and standard devia-

tion (A.2) and (A.3) to the (10) and (11) ones, when σ2 = 1.
Positive correlations bias the mean toward the most accurate
datum more than the negative ones. Unless ρ ∈ [–1, 0], (A.2)
shifts more quickly than (10). This occurs because—as shown

3
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Figure 3. Posterior mean (top) and standard uncertainty (bottom) of
the measurand value. Solid lines: unknown correlations, the ranges
are given in the legend. Dashed lines: fixed correlations, the
least-informative values are given in the legend. The reduced data
are x1 = 0 ± a and x2 = 1 ± 1.

by the blue and red lines—both positive and negative correla-
tions bias the mean in the same way. In the cases considered,
the measurand variance (A.3) equals (11) for all practical pur-
poses. If the data have the same uncertainty, the variance is 1/2
when ρ = 0, 3/4 when ρ = 0.5, and 1/4 when ρ = −0.5.

5. Correlation range

Correlations arise because, for example, the same standards or
input data are used. Other sources are noise transients in time-
series data and constraints, for instance, to match an aggregate
datum.

To see how contextual information constrains the ρ range,
without loss of generality, let us suppose that the data model is

x1 = μ+ η1 + η0

x2 = μ+ η2 + hη0
, (14)

where η1,2,0 are zero-mean uncorrelated errors having vari-
ances u2

1, u2
2 and u2

0, respectively and η0 and h take the uncer-
tainty of the common references and input data (or the noise
memory) and the (possibly) different sensitivities into account.

If h = 1, (14) describe data corrected for the same quan-
tity, where the quantity magnitude is uncertain. If h �= 1, the
data are corrected for different values of the same quantity,
where their responsiveness is uncertain. For example, different
thermal expansions, where the expansion coefficient is uncer-
tain. In this case, u2

0 is the variance of the expansion coefficient
and h the ratio of the differences between the measurement
temperatures and a reference one.

The variance-covariance matrix of the data is given by (7),
where

σ2 =
√

u2
2 + h2u2

0, (15a)

a = σ1/σ2 =
√

u2
1 + u2

0

/
σ2, (15b)

ρ =
hu2

0

aσ2
2

. (15c)

The inequalities 0 < u0/σ2 < a < 1, 0 < |ρ| < 1, and |h| <
σ2/u0, can be solved to see that [14]

|ρ| < min
[
|h|a, (|h|a)−1

]
. (16)

This inequality defines the range of the possible ρ values when
there is no other information than the total standard deviations
σ1,2. The data can be maximally correlated only if |h|a = 1. If
h = 1, the maximum ρ value is equal to the uncertainty ratio.
If a = 1, the magnitude of the sensitivity ratio or its inverse
bound the correlation.

6. Extension to multiple data

To extend our results to more than two data, it is necessary
to take the positivity of the covariance matrix into account. A
criterion, named after James Joseph Sylvester [15], to test the
matrix positivity is that all its principal minors are positive. For
instance, in the case of three data, the first two principal minors
are always positive and the Sylvester’s criterion reduces to 1 −
ρ2

12 − ρ3
23 − ρ2

13 + 2ρ12ρ23ρ13 > 0. Figure 4 shows the three-
dimensional region in which this inequality is true.

By assuming that the results were corrected for the same
systematic effects,

xi = μ+ ηi + hiη0 (17)

where ηi,0 are zero-mean uncorrelated errors having variances
u2

i,0. In (17), η0 and hi take the common contributions to the
error budgets and the different xi’s sensitivities to them into
account. For the sake of simplicity, we consider only the case
∀i, hi > 0 and assume that every common contribution to the
error budgets is not greater than the total standard uncertainty
of the most accurate datum, say σ1. Hence, when there is no
other information than the total standard deviations σi, the
ranges of the ρi j values are constrained by

0 < ρi j =
hih ju2

0

σiσ j
<

σ2
1

σiσ j
. (18)

By proceeding as in section 3.2, the posterior distribution of
the μ value is

μ ∼ 1
Z

∫
. . .

∫

0<ρi j<σ2
1/(σiσ j)

Σ�0

e−xTΣ−1x/2√
|Σ|

dρ1,2 . . . dρn−1,n, (19)

where x = (x1 − μ, x2 − μ, . . . xn − μ)T and Σ � 0 limits the
integration region to where Σ is positive definite (for an

4
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Figure 4. A 3 × 3 covariance matrix is positive definite if and only
if the correlation coefficients are inside an inflated tetrahedron.

example, in the case of three data, see figure 4). The normal-
ization constant Z, posterior mean, and variance are given in
ways similar to (A.1)–(A.3), but no analytical integration is
possible.

7. Application examples

7.1. Example 1

The two repeated measurements of the Avogadro
constant, NA = 6.022 140 99(18) × 1023 mol−1 and
NA = 6.022 140 76(12) × 1023 mol−1, given in [16] are
correlated by a number of (nearly) equal corrections, made
for the effect of the same influence quantities. To make these
NA values usable for the estimation of a self-consistent set of
values of the constants of physics by the Committee on Data
for Science and Technology (CODATA), one of the authors
estimated their correlation coefficient as equal to 0.17 [4].

Taking this value into account, the posterior inference and
maximum likelihood estimate of the Avogadro constant are
both equal to [4]

NA = 6.022 140 82(11) × 1023 mol−1. (20)

If the analyst does not know the ρ value—by assuming that
the data model is (14), where h = 1—is still possible to infer
the NA values as follows. Since the uncertainty ratio is a =
2/3, according to (16), the ρ value must be in the [0, 2/3] inter-
val and its least informative value is ρ = 1/3, not so far from
the estimated 0.17 value. The posterior mean and standard
uncertainty (A.2) and (A.3) are

NA = 6.022 140 81(11) × 1023 mol−1. (21)

This value is in excellent agreement with (20), which required
a detailed analysis of each contribution to the total uncertain-
ties of the measured values.

Table 1. Reduced results xi (first row and column), uncertainty
ratios ai = σi/σ4 (diagonal), and correlation coefficients (upper
triangle, blue). The lower triangle (red) gives the correlation upper
bounds estimated via the model (18). The largest reduced
standard-uncertainty is σ4 = 0.424. Adapted from [6].

7.2. Example 2

Since 2011, the international Avogadro coordination deter-
mined NA by counting the atoms in the same 28Si-enriched
monocrystals.

Reference [6] provides guidance on how these results must
be used to infer an updated value. Table 1 shows the reduced
data,

0 � xi =
Ni − N1

N4 − N1
� 1, (22)

sorted according to ascending uncertainties, the uncertainty
ratios ai = σi/σ4 � 1, and the correlation coefficients (typed
blue). N4 and N1 are the least and most accurate results,
respectively, and

σi =
σNi

N4 − N1
. (23)

Taking these data into account, the posterior inference and
maximum likelihood estimate are both equal to μ0 = xML =
0.15(15), or NA = 6.022 140 588(65) × 1023 mol−1 [6]. If the
correlations were set to zero, because unknown, μ0 = xML =
0.25(13), or NA = 6.022 140 631(54)× 1023 mol−1, are sig-
nificantly different.

If the correlations were unknown, by making the simplest
assumption that the results were equally corrected for the same
systematic effects, the data model is the same as (17). The
upper bounds to the correlation coefficients given by (18) are
shown in table 1 (typed red). Two of them are slightly inconsis-
tent. This inconsistency might originate from having neglected
the differences between the systematic-correction variances.

The posterior mean and standard uncertainty have been
numerically evaluated via (19) and the relevant integra-
tions. They are μ0 = 0.17(15), or NA = 6.022 140 598(64)×
1023 mol−1. Not so dissimilar from the inference using the
maximally informative data.

7.3. Example 3

As an example from the interlaboratory comparisons, which
produce a consensus value for the common measurand that
averages the measurement results of the participants, we con-
sidered a bilateral comparison of stainless steel mass stan-
dards [17], where the participants supplied an estimate of the
correlation coefficients.

Reference [17] and table 2 provide the differences between
the true and nominal masses measured by the pilot (before
and after the circulation) and participating laboratory, as well

5
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Table 2. Weighing results for the 500 g mass standard as
differences (expressed in mg) from the nominal mass value (first
row and column), associated standard uncertainties (diagonal), and
correlation coefficients (upper triangle, blue). The lower triangle
(red) gives the correlation upper bounds estimated via the model
(18). Adapted from [17].

as the associated standard uncertainties, σi, and correlation
coefficients (typed blue). The upper bounds to the correlation
coefficients, calculated by application of (18), are typed red.

The posterior mean and standard uncertainty,
−0.234(37) mg, have been numerically evaluated via
(19) and the relevant integrations. It is worth noting that,
in this case, the domain 0 < ρi j < σ2

1/(σiσ j) is not fully
included in Σ � 0. The maximum likelihood estimate
and the associated standard uncertainty given in [17] are
−0.234(41) mg.

7.4. Example 4

As a last example, we consider the results of the frequency
measurements of the unperturbed transition 1S0–3P0 in the
171Yb atom [18, 19],

νYb = 518 295 836 590 863.71(11) Hz (24a)

νYb = 518 295 836 590 863.61(13) Hz, (24b)

where the traceability to the international system was pro-
vided by a link to the international atomic time (TAI) [20].
The authors of [18, 19] calculated an uncertainty contribution
from the primary frequency standards that contributed to TAI
during the measurements of 0.07 Hz and 0.06 Hz, respectively.

The systematic contributions to the uncertainty of each
TAI’s standard are correlated, though different averages might
have been used in the two measurements. The data pub-
lished by the International Bureau of Weights and Measures
allowed the estimate of the ρ value. We calculated ρ = 0.27,
after a careful evaluation of the contributions of the rel-
evant primary and secondary standards. Taking this value
into account, the posterior inference and maximum likeli-
hood estimate of the 1S0–3P0 transition-frequency are νYb =
518295836590863.671(94) Hz.

By using the data model (14), where σ1 = 0.11 Hz, σ2 =
0.13 Hz, u0 � 0.07 Hz, and hu0 � 0.06 Hz, the maximum
data-correlation is ρ = 0.29. According to (A.2) and (A.3),
the posterior inference of the transition frequency is νYb =
518295836590863.670(90) Hz, which is again in excellent
agreement with the maximum likelihood estimate.

8. Conclusions

Correlation coefficients give the appropriate weights in
analyzing the measurement results and expressing the

measurand uncertainty. However, the information reported in
the literature is often insufficient to estimate them, and addi-
tional inputs would be necessary. Therefore, we provided
examples of the inference of the measurand value, when only
the total uncertainties and correlation limits are associated with
the measurement results.

To do this, we determined the least informative sam-
pling distribution by minimizing the Kullback–Liebler diver-
gence relative to a uniform distribution. In the case of a data
pair, the inferred correlation coefficient is the midpoint of
the possible values. In particular, the correlation coefficient
inferred from the absence of constraints is zero. However,
the data distribution is not Gaussian, though its marginals
are.

Our results apply when common contribution(s) are
included in the error budgets, but their amounts are unknown.
Obviously, our results do not apply to correlation of dark
uncertainties [21].
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Appendix A. Posterior mean and variance

The normalization constant of the posterior distribution (9) is
[14]

Z =

∫ +∞
−∞

∫ ρ2
ρ1

e

− (1−2aρ+a2)μ2−2a(a−ρ)μ+a2

2a2(1−ρ2)σ2
2

2π
√

1−ρ2 aσ2
2

dρ dμ

ρ2 − ρ1

=
τ1E3/2(τ−2

1 ) − τ2E3/2(τ−2
2 )

2
√
πa (ρ2 − ρ1)σ2

2

, (A.1)

where τ 2
1,2 = 2σ2

2(a2 − 2aρ1,2 + 1) and En(.) is the exponential
integral function [22, 23].

The posterior mean is [14]

μ0 =

∫ +∞
−∞

∫ ρ2
ρ1

μ e

− (1−2aρ+a2)μ2−2a(a−ρ)μ+a2

2a2(1−ρ2)σ2
2

2π
√

1−ρ2 aσ2
2

dρ dμ

Z(ρ2 − ρ1)

=

{
τ1 exp

(
−τ−2

1

)
− τ2 exp

(
−τ−2

2

)
−√

π
[(

a2 − 1
)
σ2

2 − 1
] [

erf
(
τ−1

1

)
− erf

(
τ−1

2

)]
}

2
[
τ1E3/2

(
τ−2

1

)
− τ2E3/2

(
τ−2

2

)] ,

(A.2)

where erf(.) is the error function [22, 23].
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The posterior variance is [14]

σ2
μ =

∫ +∞
−∞

∫ ρ2
ρ1

μ2 e

− (1−2aρ+a2)μ2−2a(a−ρ)μ+a2

2a2(1−ρ2)σ2
2

2π
√

1−ρ2 aσ2
2

dρ dμ

Z(ρ2 − ρ1)

− μ2
0

=

{√
π
(
3σ2

2 + 1
)
τ1τ2

[
erf

(
τ−1

1

)
− erf

(
τ−1

2

)]
+

2
[
υ1τ2 exp

(
−τ−2

1

)
− υ2τ1 exp

(
−τ−2

2

)]
σ2

2

}

3τ1τ2
[
τ1E3/2

(
τ−2

1

)
− τ2E3/2

(
τ−2

2

)]
− μ2

0, (A.3)

where

υ1,2 = 1 + a2 − 2aρ1,2 +
[
2 + a2 + 2a4

− aρ1,2(2 + 2a2 + aρ1,2)
]
σ2

2 . (A.4)
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