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Abstract. Determining the degree of equivalence of participating laboratories
from the results of measurement comparisons still prompts discussions
among metrologists, especially where measurement uncertainties have been
underestimated. This paper expands on a solution to a problem issued in 2020 by
the Journal of Analytical and Bioanalytical Chemistry. The example illustrates
an approach to consensus-building based on Bayesian selection among statistical
models that attempt to explain the excess of data variation. The probability of
any further model being correct can be similarly calculated.
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1. Introduction

When measurement results are inconsistent, that is,
their dispersion is greater than what is expected from
the reported uncertainties and allowing for different
statistical models, determining a reference value of
the measurand prompts discussions [1–8]. A typical
case study is to determine a consensus value of the
Newtonian constant of gravitation [9]. Reviews of the
state-of-the-art in the selection of statistical models
and data reduction in laboratory comparisons are in
[10,11] and the references therein.

An excess of data scatter suggests the presence of
unrecognized contributions to the uncertainty budget,
colloquially referred to as dark uncertainty [10,12]. The
problem is to cope with the this scatter, which is larger
than the reported uncertainties. An approach is to
inflate the individual uncertainties [13]. Another is
to identify and exclude from the calculation of the
reference value the outliers. This exclusion occurs
naturally if the data are sampled from distributions
with thick tails, e.g., a Student t-distribution [14–18].
An alternative to distributions with thick tails is a
“good-and-bad data” model, which leads to a mixture
of two Gaussians [17,19]. Another, by assuming normal
data whose means are shifted by unknown-variance
zero-mean laboratory effects, is to use a random-effect
model [10,20].

A decision-theoretical approach requires to assign
probabilities to the measurand values. Since
they follow from the application of the probability
calculus, which is an extension of the Boolean logic,
these probabilities encode in a consistent way the
information available on the measurand value before
the measurements are carried out and that delivered by
the measurement results. They underpin any informed
decision based on the measurand value, for instance,
the choice of the reference value. Eventually, their
normalisation factor makes it possible to compare the
statistical models proposed for the scatter of the data,
to identify which model is the best explanation of the
discrepancy, and to choose the reference value based
on it.

The solution presented here extends a Bayesian
approach outlined in [17,18]. To illustrate it, I consider
the challenge in [21, 22], which addresses determining
the reference value and the degree of equivalence of the
laboratories participating in a comparison of activity
measurements of the radionuclide 59Fe [23].

Since the chi-squared test for the variance
detects mutual inconsistency and sample preparation
or artefact instability is ruled out, I assume that
the uncertainties associated with the data might
be only lower bounds to standard deviations and
develop the tools necessary to i) compare statistical
models that groups differently the data and ii) select
the most probable model, given the data. This
makes it unnecessary to identify and exclude the
data disagreeing with the majority or magnify the
uncertainties to make the data consistent.

Calculations were carried out with the aids of
Mathematica [24]. The relevant notebook is given as
supplementary material. To read and interact with
it, download the Wolfram Player free of charge from
Wolfram Research. Reference books on the probability
calculi and Bayesian inferences underpinning this
paper are [25–30].

2. Problem statement

The interlaboratory comparison considered involves
eleven metrology institutes [23]. Following the
challenge in [21], the input data (see [21] and the
supplementary material) are the measured values of
the iron-59 activity, xi, which is positive by definition,
and the associated uncertainties, ui, which are judged
underestimated by a chi-squared test for the variance.
No a priori knowledge is assumed about correlations,
degrees of freedom of the uncertainty estimate, and the
measurand.

The first step in Bayesian inferences is to
encode the information available on the measurement
procedure in a probability density function of the
input data [31]. The distributions that encode only
that the data are unbiased measurement results of the
same quantity having specified uncertainties, without
introducing uncontrolled assumptions, are independent
Gaussians [28, 32], having common (positive) mean
µ and, to avoid neglecting underestimation, standard
deviations σi greater than or equal to the uncertainties
associated to the measurement results.

We might also explain the data scatter by noting
that the uncertainties are measurement results [17,33]
and by allowing for standard deviations either wider
or narrower. I do not examine this possibility, but its
greater or lesser probability can be determined along
the same lines discussed in the following.
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3. Solution

Data inconsistency implies that there are unrecognised
contributions to the uncertainty budget [12] or, which
is equivalent, that the uncertainties associated with the
data are lower bounds to standard deviations [17, 18].
No additional information is available about the data
dispersion, e.g., about artefact instability or the sample
preparation. Therefore, to explain the data, I consider
the following statistical models. For some datum, the
σi = ui identity holds; the others are affected by
unrecognized uncertainty contributions.

In the first case, xi ∼ N(xi|µ, u2
i ). In the

second, xi ∼ N(xi|µ, σ2
i ), where σi ≥ ui. The

hypothesis space contains 2048 (mutually exclusive)
models, classified by the subsets of the measured
values, the empty set and its complement included.
Each subset groups the results xi ∼ N(xi|µ, u2

i ), whose
associated uncertainties are the standard deviations of
their sampling distributions.

Since any model is uncertain, to prove or disprove
that the chosen one explains the data, I must allow
comparisons against the others. This requirement im-
poses that the marginal likelihood (the normalisation
factor in the Bayes’ rule, also termed evidence) is in-
dependent of the model parameterisations. This be-
cause it is proportional to the probability of observing
the data no matter what the model parameters may
be. Consequently, the prior distributions of different
model parameterisations must be proper and comply
with the change-of-variable rule.

Since testable information is not given, the area
element of the N(xi|µ, σ2

i ) manifold equipped with
a Fisher-information metric (in general, named after
H Jeffreys [34]) does the work without introducing
uncontrolled assumptions. Hence, the prior distri-
bution of the model parameters µ and σi is

µ, σi ∼ π(µ, σi|ui) =
ui
Vµσ2

i

, (1)

where ui ≤ σi, µ > 0, and Vµ is the µ’s support.
The main motivation for this choice is that

it complies with the change-of-variable rule under
reparameterisation. Further motivations, built on the
symmetries of the way the measurand is linked to
the data, are discussed in [30]. The supplementary
material shows explicitly that the parameterisations
N(xi|µ, u2

i + τ2
i ) or N(xi|µ, λ2u2

i ) deliver the same
prior after the σ2

i = u2
i + τ2

i and σ = λu changes of
variable. A different prior is possible [20], but we must
be aware of the information delivered to the problem
and accept that the changing-of-variable rule will give
the distribution of any other parameterisation.

When an improper prior is used for the parame-
ters, the posterior probability of the model being cor-
rect is meaningless [35]. Therefore, without affecting

the proportionality to the area element and the compli-
ance with the change-of-variable rule, (1) restricts the
range of the µ values to a finite interval, which is as-
sumed large enough to allow approximating the needed
integrations by extending Vµ to the real line. At the
same time, keeping Vµ explicit makes (1) dimensionally
correct and future comparisons possible.

The sampling distribution of xi, given µ and ui
and with the unknown σi integrated out, is

x ∼ L(x|µ, u) = u

∫ +∞

u

N(x|µ, σ2)/σ2 dσ

=

(
1− e−

(x−µ)2

2u2

)
u

√
2π(x− µ)2

, (2)

where I dropped the i subscript. The data likelihood
is

x ∼ Q(x|µ,u, A) =
∏
i∈A
N(xi|µ, u2

i )
∏
j∈Ā

L(xj |µ, uj), (3)

where A is a subset grouping xi ∼ N(xi|µ, u2
i ) data

and Ā is its complement. The marginal likelihood and
the posterior distribution of the mean are

Z(x|u, A) =
1

Vµ

∫ +∞

−∞
Q(x|µ,u, A) dµ (4)

and

µ ∼ P (µ|x,u, A) =
Q(x|µ,u, A)

VµZ(x|u, A)
, (5)

where the Vµ/ui support and µ/ui > 0 are large
enough to extend the integration to the real line for
all practical purposes. The integral in (4) has no
analytical solution. As shown in the supplementary
material, I evaluated it numerically with the help of
Mathematica.

The probabilities of the models Ai, i =
1, 2, ... 2048, of being correct when the measurement
results are {xi}, which are shown in Fig. 1, are

Prob(Ai|x,u) =
Z(x|u,Ai)∑
i Z(x|u,Ai)

, (6)

where, in the absence of additional information, I
assumed equiprobable Ais, which corresponds to the
maximum entropy prior.

4. Consensus value

All the information about the measurand is encoded in
its posterior probability density (5) averaged over all
the models,

µ ∼
∑
i

P (µ|x,u, Ai)Prob(Ai|x,u). (7)

For the sake of simplicity, I pick up the most probable
model, Amx (see Figs. 1 and 2). Hence,

µ ∼ P (µ|x,u, Amx) (8)
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Figure 1. Posterior probabilities, sorted in decreasing order, of
the 2048 data subsets to group the measurement results whose
associated uncertainties are equal to the standard deviation (blue
line), see Eq. (6). The inset shows the first 20 values. The
horizontal lines are the posterior probabilities of all σi > ui
(green) and all σi = ui (red) subsets.
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Figure 2. Most probable posterior probability, see Eq. 5,
density for the activity of iron-59. Ae(59Fe) = 14, 631 kBq is the
arithmetic mean of the data. The dots are the measured values;
the bars are the associated uncertainties ui (green: σi = ui, red:
σi > ui) and posterior 68% credible intervals (blue).

and

Z(x|u, Amx) = (61× 10−27 kBq−10)/Vµ. (9)

To explain the data, other models are possible.
Therefore, the Amx’s evidence (9) lets competing
explanations be compared with Amx. It is a kindness to
those who may wish to check this explanation against
alternatives without having to redo the calculations.
As an example, the evidence of the no-Gaussian-datum
model is (6.7× 10−27 kBq−10)/Vµ, whereas that of the
all-Gaussian-data one is (0.01×10−27 kBq−10)/Vµ (see
the supplementary material).

The choice of a consensus value is a matter
of minimisation of the agreed cost function. The
posterior mean, mode, and median are all equal to
µ = 14, 620 kBq. The posterior standard deviation
is 16 kBq. The interval that, with 95% probability,
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Figure 3. Posterior probability that the standard deviation of
the measurement result is equal to the associated uncertainty,
see Eq. (10).
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Figure 4. Predictive distribution of future NIST measurement
results, see Eq. (12), given the data explanation Amx. The filled
area is the 95% confidence-interval. The dot is NIST’s result;
the bar is the associated uncertainty.

includes the true activity is [14, 588, 14, 652] kBq (see
the supplementary material). For a comparison, the
Possolo’s consensus value is 14, 628 kBq, with a 95%
interval [14, 585, 14, 674] kBq [22].

5. Degrees of equivalence

The goal of a laboratory comparison is to assess the
validity of the accuracy of national measurement stan-
dards and of calibration and measurement certificates
[1]. The gauges are the deviations from the reference
value determined from the comparison and from one
another, as expressed by the unilateral and bilateral
degrees of equivalence. The unilateral degree of equiv-
alence is the deviation of each result from the consen-
sus value and the associated expanded uncertainty for
the 95% confidence level. The degree of equivalence
between pairs of results is the difference of their de-
viations from the consensus value and the associated
expanded uncertainty for the 95% confidence level. I
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do not go on in these lines but investigate alternative
ways to assess the participants’ capability.

5.1. First option.

The first way is to evaluate the probability that
no unrecognised term contributed to the uncertainty,
which is the same probability that the given
uncertainty equals the standard deviation. Since Ais
are mutually exclusive, this probability (see Fig. 3) is

Prob(σk = uk) = pk =
∑

i:xk∈Ai

Prob(Ai|x,u), (10)

For instance, the probability that the standard
deviation of the NIST’s measurement result is equal
to the associated uncertainty is 66% (see the
supplementary material).

5.2. Second option.

The second way uses the predictive distribution of the
future measurement result ξ of the k-th laboratory,
which is the mixture

H(ξ|µ,x,u) = pkN(ξ|µ, u2
k) + (1− pk)L(ξ|µ, u2

k), (11)

where the pk probability of the N(ξ|µ, u2
k) model is

given by (10). The relevant 68% credible intervals are
shown in Fig. 2.

Given the Amx model and marginalising over the
posterior distribution of µ, the predictive distribution
of the measurement result is

ξ|x,u, Amx ∼
∫ +∞

−∞
H(ξ|µ,x,u)P (µ|x,u, Amx) dµ. (12)

Figure 4 shows the probability density (12) of an
additional NIST’s measurement result, whatever the
measurand value might be. The predicted mean
is still µ = 14, 620 kBq. The interval that, with
95% probability, includes the future NIST results is
[14, 293, 14, 946] kBq (for the computation, see the
supplementary material). This interval is nearly three
times wider than that expected from the sampling
distribution, N(ξ|µ, u2

NIST), associated with the NIST
result; that is, 653 kBq vs. 235 kBq. This difference
is due to both the µ uncertainty and the residual 34%
probability of missing terms in the uncertainty budget.

6. Conclusions

The probabilities assigned to the measurand values
consistent with the data and information at hands
offer a way to agree on a measurand value in
laboratory comparisons, no matter whether the results
are consistent or not and without worry about outliers.

When there are competing statistical data models,
the model most supported by data can be identified by
calculating each one’s probability of being true. Next,

the posterior distribution of the measurand values
can be agreed according to the most likely or the
marginalised one.

I illustrated this approach by applying it to the
results of activity measurements of the radionuclide
59Fe, which are inconsistent due to underestimated
uncertainties. Any further model competing to explain
the data can be easily integrated into the analysis and
assessed based on the reported evidence.

Acknowledgments

Support was received from the Ministero dell’Istruzione,
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