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Abstract - The paper presents results of a trilateral comparison 

with a travelling AC voltage standard comprised of a PTB/IPHT 
planar thin-film thermal converter. The AC-DC voltage transfer 
difference of the standard was measured at 1 V and at selected 
frequencies from 20 Hz to 1 MHz against primary thermal AC 
voltage standards at SUT, INRiM and Trescal. 
 

Index Terms - measurement standards, thermal converter, AC-
DC transfer, AC-DC transfer difference, key comparison 
 

I. INTRODUCTION 

ESPITE the dynamic progress in the development of 
quantum AC voltage standards, many National 

Measurement Institutes (NMI) still make use of AC-DC 
voltage transfer standards based on thermal voltage converters 
(TVC) for the realization of the unit of AC voltage up to 
1 MHz. The international comparisons of standard TVCs are 
crucial for checking their accuracy, detection of unavoidable 
systematic errors and ensuring compatibility of worldwide 
alternating voltage measurements. 

This article is an extended version of [1], organized as 
follows: In section II the motivation for this new comparison 
is given. Section III describes the participants, their reference 
standards and AC-DC transfer measurement systems. In 
section IV we describe the travelling standard. Section V 
contains the results of the comparison. The final conclusions 
are given in Section VI. 

II. MOTIVATION FOR THE NEW COMPARISON 

The following considerations served as motivation for 
performing a new AC-DC voltage transfer standards 
comparison: 

1. The last official comparison of standard TVCs in the 
frequency range up to 1 MHz, was performed among 
European NMIs in 1994 - 1996 [2], i.e. 20 years ago. A more 
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recent comparison for frequencies up to 1 MHz was performed 
in Asia and Australia in 2004 - 2005 [3], i.e. 11 years ago. No 
other more recent comparison in this frequency range is 
known to the authors. 

2. During years from 2011 to 2014 the AC-DC Transfer 
Laboratory at SUT was organized. The AC-DC transfer 
difference of its primary AC standard was calculated 
independently of other NMIs by means of several techniques 
in the frequency range from 10 Hz to 1 MHz.  The estimated 
uncertainty of the SUT AC standard is comparable to the best 
AC voltage standards available, and more than an order of 
magnitude lower than the uncertainty of the Polish AC voltage 
standard maintained at GUM [4].  

For the reasons mentioned above a new comparison of AC-
DC voltage standards was conducted.  

III.  TRAVELING STANDARD 

All participants measured the AC-DC transfer difference of 
the SUT traveling standard. A selected planar multijunction 
thermal converter (PMJTC) of PTB/IPHT design with nominal 
input voltage UN = 1.5 V, with 180 Ω heater resistance and 
with a nominal output EMF of 100 mV was used as the 
traveling standard. The traveling standard is equipped with an 
N-type input connector and an UHF-Twin type output 
connector. The output of the PMJTC is shunted with a 2.2 µF 
ceramic surface-mount capacitor. The capacitor is soldered to 
the available pads on the PMJTC ceramic substrate providing 
thermal symmetry. Additionally, to reduce the coupling 
between the heater wires and the output, the wires between the 
PMJTC output and the UHF-Twin connector are twisted 
together. 

 
Fig. 1.  AC-DC transfer differences of the SUT traveling standard compared 
with another SUT standard before and after the comparison. The error bars 
represent the expanded uncertainty (k=2).  
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 The stability of the AC-DC transfer difference of the 
travelling standard was confirmed by comparison with another 
SUT AC voltage standard both before and after the 
measurements at INRiM and Trescal. The result is shown in 
Fig.1.  

IV. PARTICIPANTS 

The comparison was performed between SUT, Poland, 
INRiM, Italy and Trescal, Denmark. The travelling standard 
was provided by SUT, which is neither an NMI nor 
Designated Institute (DI). A short description of the primary 
AC voltage standards of the participants is presented below: 

A. Silesian University of Technology (Poland) 

The SUT AC-DC comparator is located in an 
electromagnetically shielded chamber. The ambient 
temperature and humidity inside the chamber is stabilized to 
be within (23±0.2)oC and (65±10)%RH, respectively. The 
two-channel measurement system shown in Fig. 1 is 
controlled by a personal computer with remote access. The 
operator of the system can remotely monitor the progress of 
the measurements without entering the measurement chamber. 
The operator's presence in the chamber is necessary only to 
reconfigure the measurement setup. 

The AC-DC transfer difference of the primary AC Standard 
of the Silesian University of Technology is based on a set of 
thermal voltage converters from three different manufacturers. 
Most of them are equipped with PMJTC developed at PTB 
and manufactured by Leibniz-Institut für Photonische 
Technologien in Jena (Germany) [5]. 

The nominal input voltage for these TVCs ranges from 
0.5 V to 1000 V. Their AC-DC transfer differences are 
calculated using several methods. In the 10 Hz to 40 Hz 
frequency range the AC-DC transfer difference is measured 
using the method similar to the one presented in [6]. In the 
frequency range from 40 Hz to 10 kHz the AC-DC transfer 
difference is determined using a Fast Reversed DC Source 
(FRDC) [7,8]. In the 10 kHz to 1 MHz frequency range the 

SUT standard is based on two coaxial TVCs, each consisting 
of a 5 mA single junction thermal converter and a series thin-
wire resistor. Their AC-DC transfer differences was calculated 
using a complex mathematical model for these TVCs [9,10]. 
The uncertainty budgets of the calculated AC-DC transfer 
differences include uncertainty components due to the material 
constants as well as the geometrical dimensions of these 
standards. A presentation of the detailed uncertainty budgets 
of the SUT standards is beyond the scope of this paper and 
may be found in [10]. The combined standard uncertainty and 
the expanded uncertainty values given in Table I are rounded 
up to two significant digits after calculation of the 
uncertainties.   
The uncertainty budget for the measurement of the traveling 
standard is presented in Table I. It includes the influence of 
the reference standard (i.e. uncertainty of the AC-DC transfer 
difference of the calculable TVC developed at SUT), noise 
and nonlinearity of the DC nanovoltmeters, the influence of 
connector impedances and leakages, uncertainties of the 
estimation of the power coefficients (exponents) n of both 
compared TVCs and dispersion of measurements, expressed 
as the Type A uncertainty. The more detailed description of 
the uncertainty components may be found in [11].             

TABLE I 
UNCERTAINTY OF THE AC-DC VOLTAGE TRANSFER DIFFERENCE MEASUREMENTS AT SUT 

 

Standard uncertainty (µV/V) at U = 1 V and at frequency: 
Contribution to total uncertainty (µV/V) 20 

Hz 
40 
Hz 

1 
kHz 

10 
kHz 

20 
kHz 

30 
kHz 

50 
kHz 

80 
kHz 

100 
kHz 

300 
kHz 

500 
kHz 

1 
MHz 

Reference standard 0.6 0.6 0.5 0.4 0.4 0.8 0.9 0.95 1 1.5 2 2 

Standard deviation 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

Exponent n 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Influence of nanovoltmeters 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 

Connectors and leakages 0.1 0.1 0.1 0.3 0.4 0.7 0.7 0.8 0.9 0.9 1.3 2 

Combined standard uncertainty 1.0 1.0 0.9 0.9 1.0 1.3 1.4 1.5 1.6 1.9 2.5 2.9 

Expanded uncertainty (k = 2) 2.0 2.0 1.8 1.8 1.9 2.6 2.8 3.0 3.1 3.8 5.0 5.9 

 

 

 
 
Fig. 2.  Simplified measurement setup used at SUT. 
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B. Istituto Nazionale di Ricerca Metrologica- INRiM (Italy) 

The Italian National Standard for AC voltage is realized and 
maintained at Istituto Nazionale di Ricerca Metrologica 
(INRiM), formerly Istituto Elettrotecnico Nazionale Galileo 
Ferraris (IEN).  

INRiM uses a fully automated primary AC-DC measuring 
system (Fig. 3). Recently the system has been modernized. 
The major difference between the previous and present setups 
is a system for the measurement of the electromotive forces of 
thermal converters. Furthermore, an automatic convergence 
procedure has been implemented in order to align as closely as 
possible the output voltages of the AC and DC sources, and a 
fast coaxial switch is realized by use of vacuum relays. The 
inputs of the thermal converts are connected in parallel to the 
output of the coaxial switch by a custom-made N-type Tee. 
Output voltages of the TVCs are measured by nanovoltmeters, 
which are connected through a shielded low-pass band filter. 
All connections are made by shielded twisted pair cables. A 
shielding potential is connected to the common ground of the 
system. All instruments are connected to a PC through an 
optically isolated GPIB bus. The measurements were 
performed automatically in a temperature (23°C±1)°C and 
humidity (relative humidity ranging between 35%RH and 
50%RH) controlled laboratory. 

 

 

 
Fig. 3.  Block diagram of the automatic AC-DC experimental setup at INRIM. 
CS coaxial switch realized with vacuum relays;  Ch - coaxial choke; VN - 
voltage node for parallel connection of TVCs; LPF - low-pass band filter;;nV 
- digital nanovolmeter Keithely model 2182A, VAC and VDC voltage 
calibrator; PMJTC - planar multijunction thermal converters under 
comparison.  
 

The currently used system is similar to the system which 
was used during the EURAMET.EM-K12 key comparison of 
AC-DC current transfer difference. The system was validated 
by measuring the voltage AC-DC transfer difference between 
a pair of PMJTCs in two ways: using the new fully automated 
measurement system and using the previous system based on a 
thermal EFM comparator [12]. The difference between the 
two measurement systems is included in the uncertainty 
budget as u(δM). 

The AC voltage traceability chain begins with the SI DC-
voltage representation given by the DC-Josephson effect, and 
its practical realization is based on a set of AC-DC transfer 
standards, i.e. Single Junction Thermal Converters (SJTC), 
Three-Dimensional Multi-Junction Thermal Converters (3D-
MJTC) [13], planar multi-junction thermal converters and 
suitable ratio devices connected to the TVCs for the AC 
voltage scale implementation. The primary AC-DC laboratory 
of INRiM participated in the informal comparison by 
measuring the AC-DC voltage transfer difference of the thin-
film PMJTC standard provided by SUT against two thin-film 
PMJTCs (Fig. 3), with rated input resistance of 180 Ω, which 
were calibrated directly against the primary AC-DC voltage 
transfer standards [15] at an input voltage of 1 V.   

  The uncertainty budget for the measurement of AC-DC 
transfer difference is presented in Table II. The main 
uncertainty contributions are:  

• Uncertainty of the standard used during the comparison 
calibrated against the INRIM AC-DC primary standard 
at the nominal voltage of  1 V.  

• Uncertainty of the comparison measurements which can 
be decomposed into the following components: u(δA), 
u(δR), u(δM), u(δO), u(δD) (Table II). 

TABLE II 
UNCERTAINTY OF THE AC-DC VOLTAGE TRANSFER DIFFERENCE MEASUREMENTS AT INRIM 

 

Standard uncertainty (µV/V) at U = 1 V and at frequency: 
Contribution to total uncertainty (µV/V) 20 

Hz 
40 
Hz 

1 
kHz 

10 
kHz 

20 
kHz 

30 
kHz 

50 
kHz 

80 
kHz 

100 
kHz 

300 
kHz 

500 
kHz 

1 
MHz 

u(δref) Calibrated PMJTC against primary standard at 1V 0.8 0.5 0.4 0.4 0.4 0.4 0.4 0.8 1.1 3.1 4.2 9.5 

u(δA): Standard deviation of the mean of 15 measurements 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 

u(δR): Repeated measurements 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

u(δM): Measurement setup, connectors and bead leakages 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.4 0.7 1.5 2.0 

u(δO): Optimization process 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.5 1 1.5 

u(δD): Deviation from different determination 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Combined standard uncertainty  0.89 0.56 0.49 0.49 0.49 0.49 0.49 0.90 1.25 3.33 4.84 10.0 

Expanded uncertainty (k = 2)  1.8 1.1 1.0 1.0 1.0 1.0 1.0 1.8 2.5 6.7 9.7 20 
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The uncertainty components are well described in the 
literature [11], and seem redundant to explain again in this 
paper.             

C. TRESCAL (Denmark) 

The Danish National Standard for AC voltage is realized 
and maintained at TRESCAL. Trescal uses a fully automated 
two-channel measuring system (Fig. 4). The reference 
standard (ref) and the thermal voltage converter to be 
measured (lab) are connected in parallel via a T-adaptor to an 
automated switch box. A DC source and an AC source are 
also connected to the switch box, so that DC voltage and AC 
voltage can be applied alternately to both thermal converters 
in a predetermined sequence. The output voltage of both 
thermal converters is measured independently by two 
nanovoltmeters.  

All equipment is remotely controlled via computer-based 
GPIB. All measurements are performed under controlled 
environmental conditions: (23±1)°C and (45± 15)%RH. 

A new software platform for the automated measurement 
process has been developed, allowing improved monitoring of 
any potential drift of the measured AC-DC transfer difference 

during the measurements. In addition, the determination of the 
power coefficients n of the TVCs has been improved by use of 

an automated program dedicated to this task. 
At Trescal the Danish national standard for AC-DC voltage 

transfer difference is maintained by use of three PTB type 3D-
MJTCs with rated input impedances of 190 Ω [13,14,15]. The 
AC-DC voltage transfer difference of the traveling standard 
was compared with these primary standards in a fully 
automated two-channel setup. In the subsequent measurements 
a problem with the GPIB of one of the nanovoltmeters used in 
the comparison was detected, which by means of a second set 
of measurements after completion of the comparison revealed 
an influence on the results at high frequency of 0.5 µV/V at 
100 kHz increasing to 5 µV/V at 1 MHz. 

For the measured AC-DC transfer difference of the 
travelling standard, δlab, the resulting measurement 
uncertainties are listed in Table III. The standard uncertainties 
of the PTB-type 3D-MJTCs reference standards is estimated 
with contributions due to capacitance, inductance and 
dielectric loss of the heater and leads and skin effect, whereas 
thermoelectric effects have been determined once by use of 
fast reversed DC (FRDC) measurements. The standard 
deviation is a result of at least 12 repeated runs at each 
frequency and calculated as the standard deviation of the 
mean. The influence of the power coefficients relies on 
determination of the power coefficient of TVC (within 
±0.5%). The nanovoltmeter contributions are based on its 
specification (typically noise: 1.5 - 10 nV) and measurements 
(linearity measured with a Josephson DC voltage system, 
typically 1 - 5 nV for a 50 µV/V interval around the measured 
output voltage). A variation of the length of the two arms from 
the centre of the T-adaptor, which is the reference plane of the 
measurements, can be up to 0.5 µV/V per mm at 1 MHz, but 
different T-adaptors cause differences in the measurement 
results up to 5 µV/V at 1 MHz, an effect which becomes 
significant above 50 kHz. The different results obtained with 
the three reference standards are also considered as an 
uncertainty component. 

 

 
 
Fig. 4.  Simplified measurement setup used at Trescal. 
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Other possible influence parameters such as frequency 
accuracy (100 µHz/Hz), harmonic distortion (below 0.5%), 
time constants and temperature coefficients of the thermal 
converters, with a proper choice of stabilization periods, are 
considered to be negligible. The resulting number of effective 
degrees of freedom exceeds 100 at all frequencies, so a 
coverage factor of k = 2 is used to determine the expanded 
measurement uncertainties.  

V. RESULT OF COMPARISON 

Each participant measured the AC-DC transfer difference 

ilab,δ  of the travelling AC voltage standard for selected 

frequencies. For each frequency, the deviation 

( ) reflab, δδδ −=∆ i  from a reference value refδ  was calculated, 

where [16]: 

 

( ) ( )ref
2

lab
2

lab
ref δ

δ
δδ u

u i

i∑= . (1) 

 

ilabδ and ( )iu labδ is the AC-DC transfer difference and its 

uncertainty, respectively, measured by the i-th participant and 
 

( ) ( )∑=
iuu lab

2
ref

2

11

δδ
. (2) 

 
The result of comparison is shown in Fig.5. The error bars 

in Fig.5 represent the expanded uncertainty (k=2). 

 
Fig. 5.  Result of the trilateral interlaboratory comparison. 

 

VI.  CONCLUSION 

The results obtained within the trilateral comparison of AC 
voltage standards show good consistency, especially in the 
20 Hz - 100 kHz frequency range. Furthermore, the need to 
extend our calibration capabilities beyond 1 MHz range leads 
us to consider a further comparison in frequency range from 
1 MHz to 10 MHz. Crystal quartz thin-film multijunction 
thermal converters have been purposed, but these are not yet 
available commercially, so the use of thin-film silicon and 
fused-silica based MJTCs alongside traditional SJTCs seems 
to be the more reasonable proposal.        
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