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Magnetization dynamics in uniformly magnetized nanomagnets excited by time-harmonic (AC)

external fields or spin-polarized injected currents is considered. The analysis is focused on the

behaviour of the AC-excited dynamics near saddle equilibria. It turns out that this dynamics has a

chaotic character at moderately low power level. This chaotic and fractal nature is due to the phe-

nomenon of heteroclinic tangle which is produced by the combined effect of AC-excitations and

saddle type dynamics. By using the perturbation technique based on Melnikov function, analytical

formulas for the threshold AC excitation amplitudes necessary to create the heteroclinic tangle are

derived. Both the cases of AC applied fields and AC spin-polarized injected currents are treated.

Then, by means of numerical simulations, we show how heteroclinic tangle is accompanied by the

erosion of the safe basin around the stable regimes. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4914530]

Magnetization dynamics in uniformly magnetized ferro-

magnets driven by time-harmonic (AC) excitations has been

extensively studied in connection with the phenomenon of

ferromagnetic resonance.1 In this case, AC fields produce

small magnetization oscillations around a stable equilibrium.

The response of the system depends on the frequency of the

excitation and, in the linear regime, follows the usual reso-

nance curve peaked around the Kittel frequency.2 Owing to

the weakly dissipative nature of magnetization dynamics,

nonlinear effects are excited at moderately large powers, at

which the resonance response may become hysteretic (bista-

ble) due the fold-over effect.3

In this paper, we study a similar problem but we want to

investigate the effects of time-harmonic excitations in a

wider region of the state space. More specifically, we are

interested in the regions around saddle-type equilibria which

are usually at the top of the potential wells. The reason for

studying such an unstable region is related to the fact that

saddle equilibria and the associated heteroclinic/homoclinic

manifolds connecting the saddles, which are referred to as

homoclinic/heteroclinic cycles, constitute the separatrices,

namely, the boundaries of basins of attraction of different

attractors (asymptotic regimes). It turns out that the AC per-

turbations of the dynamics in the vicinity of saddle equilibria

give rise to phenomena incomparably more complex of those

observed in the vicinity of a stable equilibrium.

These complex phenomena are due to the possibility that

the homoclinic/heteroclinic manifolds, at sufficiently large

AC excitations, may intersect infinitely many times forming a

structure referred to as homoclinic/heteroclinic tangle which

may lead to separatrices which have a fractal geometrical na-

ture. One of the main consequences of these phenomena is

that the magnetization motions starting inside an energy well

may, at later time, escape the well. This mechanism is called

basin erosion and it starts in the vicinity of the saddle equili-

bria and the associated homoclinic/heteroclinic cycles.4

The aim of this paper is to bring attention on the phe-

nomena above introduced which, in the area of applied mag-

netism, have been largely overlooked. In the paper,

magnetization dynamics is described by the Landau-Lifshitz

(LL) equation appropriately generalized to take into account

the effect of spin polarized currents. The external excitation

conditions are taken to be purely sinusoidal with zero bias in

both the applied fields and the injected currents. In these con-

ditions, the entanglement of saddle manifolds is of the heter-

oclinic type. The origin of heteroclinic tangle is first

illustrated from the qualitative point of view. Then, by using

the perturbation techniques based on Melnikov function,5 we

derive analytical formulas for the threshold values of AC

applied fields and of AC injected spin-polarized currents for

the onset of the heteroclinic tangle. In the final part of the pa-

per, we discuss the phenomenon of basin erosion on the basis

of numerical simulations.

The evolution of the magnetization M in a uniformly

magnetized ferromagnet is described in terms of normalized

vector m¼M/Ms, where Ms is the saturation magnetization

and jmj ¼ 1. The evolution of m on the unit sphere R is gov-

erned by the following generalized Landau-Lifshitz equation6

dm

dt
¼ m�rRg�rRw ; (1)

where rR is the gradient operator on the unit sphere,

g¼ g(m, t) is the free energy, and w¼w(m, t) is a potential

a)Author to whom correspondence should be addressed. Electronic mail:

serpico@unina.it.
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function which takes into account effects of damping and

spin-torque. We use normalized quantities so that time is

measured in units of (cMs)
� 1, where c is the gyromagnetic

ratio, and the energy functions g and w in units of l0M2
s V,

where l0 is the vacuum permeability and V is the volume of

the particle. The free energy is given by the following

expression:

gðm; tÞ ¼ g0ðmÞ � hacðtÞ �m ; (2)

where

g0ðmÞ ¼ ðDxm2
x þ Dym2

y þ Dzm
2
z Þ=2 ; (3)

where Dx, Dy, and Dz are effective anisotropy constants. The

field hac(t) in Eq. (2) is the time-harmonic (AC) external

field

hacðtÞ ¼ exhax cosðxtþ dxÞ þ eyhay cosðxtþ dyÞ
þ ezhaz cosðxtþ dzÞ; (4)

where ex, ey, and ez are the cartesian unit vectors, and where

hax, hay, haz, dx, dy, and dz are the amplitudes and phases of

the cartesian components of hac(t), respectively. In addition,

we assume

wðm; tÞ ¼ agðm; tÞ þ bðtÞðm � epÞ; (5)

where the first term at the right-hand-side is the usual

Landau-Lifshitz damping term (a is the damping constant),

while the second term takes into account the spin-torque

effect.6 The quantity

bðtÞ ¼ bac cosðxtþ dpÞ (6)

is the AC normalized spin-polarized current and ep is the

electron polarization orientation.

In most cases of practical and physical interest, it happens

that a, hac, bac � 1 (hac ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

ax þ h2
ay þ h2

az

q
). This leads to

the following perturbative form of Eq. (1):

dm

dt
¼ v0 mð Þ þ ev1 m; tð Þ ¼ v m; t; eð Þ ; (7)

where v0ðmÞ ¼ m�rRg0ðmÞ is the unperturbed hamilto-

nian vector field and ev1ðm; tÞ ¼ �m� hacðtÞ � rRwðm; tÞ.
The parameter e is formally introduced in preparation of a

perturbation analysis of the dynamics based on the assump-

tion that e � 1. One can interpret e as a parameter which

controls the amplitude of all small quantities in the problem,

and more specifically, the amplitude of AC excitations. In

the form (7), the equation governing magnetization dynamics

is a perturbed hamiltonian dynamics on the unit sphere with

hamiltonian given by the function g0(m).

The non-autonomous dynamical system (7) can be ana-

lyzed by introducing the stroboscopic map7

mnþ1 ¼ P½mn; e� ; (8)

where mn ¼ mðt0 þ n TÞ and T¼ 2p/x, which maps an ini-

tial magnetization m(t0) to the magnetization m(t0þT)

obtained by integrating Eq. (7), over a time interval equal to

T. Notice that the stroboscopic map (8) is a time-discrete dy-

namical system and thus its trajectories are sequence of

points on R. In order to develop an analytical treatment of

P[�], we consider the following Taylor expansion:

P mn; e½ � ¼ P mn; 0½ � þ @P

@e
mn; 0½ �eþO e2ð Þ: (9)

The zero order term of the expansion gives the unperturbed

map the trajectories which lie on the curves with constant

value of g0(m) and these can be determined in closed form.6

This implies that the unperturbed map P[mn, 0] admits, as

saddle fixed points, the saddle equilibria associated with the

vector field v0(m). The qualitative features of the phase por-

trait of v0(m) in cylindrical coordinate ð/;mzÞ are sketched

in Fig. 1(a). The two saddles xd1 and xd2 are connected

through heteroclinic trajectories, which are invariant set of

the map P[mn,0]. We recall that an invariant set A of a map

P[�] is such that P[A] � A. Heteroclinic trajectories are typi-

cal only in conservative systems and they are not structurally

stable with respect to generic perturbation of the system. For

this reason, they are immediately destroyed when nonconser-

vative perturbations set in. On the other hand, saddle fixed

FIG. 1. Qualitative sketches of the separatrices associated to the strobo-

scopic map (see Eq. (8)) in the ð/;mzÞ-plane (where / is the azimuth around

the z-axis). (a) Unperturbed case; (b) damping dominated dynamics; (c) het-

eroclinic tangle formation. Legend: xd1ðeÞ; xd2ðeÞ are the saddle equilibria;

xs1ðeÞ; xs2ðeÞ are the node-type equilibria; Ws
1ðeÞ is the stable manifold asso-

ciated with xd1(e); Wu
2ðeÞ is the unstable manifold associated with xd2(e); d is

the splitting of the manifolds; C is the heteroclinic trajectory, and C1–C4 are

the constant energy trajectories. The points xa; xb; xc are generated by iterat-

ing the stroboscopic map.

17B719-2 Serpico et al. J. Appl. Phys. 117, 17B719 (2015)
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points are structurally stable entities8 and thus are preserved

under small perturbations. In the perturbed case, from each

saddle of the map, two invariant curves arise: the stable

manifold Ws and the unstable manifold Wu.7,8 In Fig. 1(b),

the two manifolds Ws
1ðeÞ and Wu

2ðeÞ are sketched and their

separation (splitting) is indicated by d. This splitting depends

on the nature of perturbation and for sufficiently large AC

perturbations it may vanish. When this is the case, a point of

intersection xa belonging to both invariant sets Ws
1ðeÞ and

Wu
2ðeÞ is realized (see Fig. 1(c)). This implies that forward

and backward iterates of P[�] starting from xa must belong to

Ws
1ðeÞ \Wu

2ðeÞ and thus that the two curves Ws
1ðeÞ; Wu

2ðeÞ,
must intersect an infinite number of times (see Fig. 1(c)).

This phenomenon is referred to as heteroclinic tangle and it

is at the origin of chaotic and unpredictable dynamic behav-

iour of the system near the saddles. In order to find when this

occurs, one must be able to compute the splitting d of Ws
1ðeÞ

and Wu
2ðeÞ. It turns out that, by using the expansion (8), the

splitting can be derived analytically and it is proportional to

the Melnikov function8 which we discuss below.

The Melnikov function approach to determine the onset

of heteroclinic tangle is based on the availability of analyti-

cal expressions6 for the unperturbed heteroclinic trajectories

mdx ¼ sxk=coshXdt;

mdy ¼ �sxsztanhXdt;

mdz ¼ szk
0=coshXdt;

(10)

where k2 ¼ ðDz � DyÞ=ðDz � DxÞ; k02 ¼ 1 � k2; Xd ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDz � DyÞðDy � DxÞ

p
and the combinations of the signs sx,

sz¼61 provide the four heteroclinic trajectories (see

Fig. 1(a)). The separatrices are trajectories with constant

energy g0¼ Dy/2. Thus, by using the expression rRf ¼ rf
�ðrf � mÞm, we get

rRg0ðmdÞ ¼ Xded"=coshXdt; (11)

where ed" ¼ �sxk0ex þ szkez is a unit normal to the plane

containing the great circle given by Eq. (10). The Melnikov

function M(x, t0) is given by

eMðx; t0Þ ¼
ðþ1
�1
½m � v0ðmÞ � ev1ðm; tÞ�mdðt�t0Þdt

¼ aM0 þ hacMhðx; t0Þ þ bacMIðx; t0Þ;

where M0 ¼
Ðþ1
�1 jrRg0ðmdðtÞÞj2dt ¼ 2Xd and

hacMh x; t0ð Þ ¼ �
ðþ1
�1

hac tþ t0ð Þ � dmd tð Þ
dt

dt; (12)

bacMIðx; t0Þ ¼
ðþ1
�1

bðtþ t0Þep � rRg0ðmdðtÞÞdt : (13)

When the system is driven by the field hac alone, i.e.,

bac¼ 0, the following result holds:

eMðx; t0Þ ¼ 2aXd þ j~hac � u�ðxÞj cosðxt0 þ wÞ; (14)

where w ¼ /ð~hac � u�Þ and we have set

hac tð Þ ¼ Ref~haceixtg;
~hac ¼ hxeidx ex þ hyeidy ey þ hze

idz ez;

u xð Þ ¼ sxkex þ szk
0ezð Þ �ipq

cosh
pq

2

þ sxszez
pq

sinh
pq

2

:
(15)

with q¼x/Xd.

The maximum value of the amplitude of the sinusoidal

component of eM(x, t0) is achieved when the equal sign of

the Shwartz inequality j~hac � u�j 	 j~hacjjuj holds, namely,

for ~hac ¼ haceidu=juj.
The threshold values for the onset of the heteroclinic

tangle can be found from the zeros of the Melnikov function

M(x, t0). The threshold value of hac for the onset of the phe-

nomenon, in the cases of the optimal polarization and for lin-

ear polarization along each of the coordinate axes, is,

respectively,

hcrit
ac;opt ¼

2aXd

ju xð Þj ; hcrit
ac;i ¼

2aXd

jui xð Þj ; (16)

where i¼ x, y, z.

We now consider the case when the system is driven by

the spin-polarized injected currents alone, i.e., hac(t)¼ 0. By

using Eqs. (11) and (13), we obtain the Melnikov function

eM x; t0ð Þ ¼ 2aXd6bac

pjep � ed"j
cosh

xp
2Xd

cos xt0 þ dpð Þ:

Hence, the general expression of the threshold for hetero-

clinic tangle creation is

FIG. 2. Threshold values of ac fields and injected currents for creation of

heteroclinic tangle versus x for the various polarizations. Values of the pa-

rameters: a¼ 0.01, Dx¼�0.3, Dy¼ 0, and Dz¼ 1.

17B719-3 Serpico et al. J. Appl. Phys. 117, 17B719 (2015)
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bcrit
ac ¼

2aXd

pjep � ed"j
cosh

px
2Xd

:

The optimal (minimum) value is achieved for ep ¼
6ðk0ex þ kezÞ or ep ¼ 6ðk0ex � kezÞ. The former (latter)

case correspond to the fact that ep is parallel to rRg0 along

the two heteroclinic trajectories which converge towards the

saddle point m ¼ ey ðm ¼ �eyÞ. The threshold correspond-

ing to the optimal polarization and to polarizations along the

coordinate axes is, respectively,

bcrit
ac;opt ¼

2aXd

p
cosh

px
2Xd

; (17)

bcrit
ac;x ¼ bcrit

ac;opt=k0; bcrit
ac;z ¼ bcrit

ac;opt=k ; (18)

while bcrit
ac;y ¼ 1. The infinite result for the case of y-polariza-

tion is due to the fact that the method is first order accurate

in e. This means that a spin-polarization along the y direction

produces a weaker effect with respect to other orientations.

The outcomes of the analytical formulas above are sum-

marized in Fig. 2. This figure shows the threshold of AC
fields and injected currents for creation of heteroclinic tangle

versus x, for typical values of the parameters.

A direct consequence arising from the onset of the hetero-

clinic tangle on the magnetization dynamics is the phenom-

enon of erosion of the basins of attraction. Such a

phenomenon has been studied numerically by solving Eq. (1)

for an ensemble of very large number of initial conditions fill-

ing the energy well around m¼þex. The erosion is illustrated

in Fig. 3 which is obtained by progressively removing the

points that escape the energy well. The erosion has important

practical consequences as it is similar to a reduction of the

depth of the potential well and thus it reduces the “safety

region” around a stable equilibrium state. In addition to that,

the boundary of the basin of attraction of asymptotic regimes

inside the well acquires a fractal nature. These phenomena

might be at the basis of complex features obtained in the mea-

surement of Stoner-Wohlfarth astroid in the presence of

microwave fields.11

It is expected that the phenomena analyzed in this paper

may be relevant in the area of spintronic devices when micro-

wave excitations are used to assist the switching of magnetiza-

tion.12 In such situations, the behavior of the system near the

homoclinic/heteroclinic cycles has a crucial influence on the

switching field or on the switching current.9,10
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show the region �p=2 	 / 	 p=2 and �0.5	mz	 0.5 of the ðmz;/Þ-plane.

The low energy well is initially filled by 524 288 phase points. When the tra-

jectory originating from a phase point escapes the well within the 20 itera-

tions of the stroboscopic map, it is considered “unsafe” and disregarded. The

phase point remaining in the well corresponding to “safe” initial conditions.

Values of parameters: Dx¼�0.3, Dy¼ 0, Dz¼ 1, a¼ 0.01, x¼ 2p/

16¼ 0.3927, and hcrit
ay ¼ 0:007.
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